Attitude estimation using a Neuro-Fuzzy tuning based adaptive Kalman filter

被引:20
作者
Ibarra-Bonilla, Mariana N. [1 ]
Jorge Escamilla-Ambrosio, P. [2 ]
Manuel Ramirez-Cortes, Juan [1 ]
机构
[1] Inst Nacl Astrophys Opt & Elect, Dept Elect, Puebla, Mexico
[2] Inst Politecn Nacl, CIC, Mexico City, DF, Mexico
关键词
Kalman filter; ANFIS; IMU;
D O I
10.3233/IFS-141183
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents the development of a Kalman Filter with Neuro-Fuzzy adaptation (KF-NFA) which is applied in attitude estimation, relying on information derived from thaxial accelerometer and gyroscope sensors contained in an inertial measurement unit (IMU). The adaptation process is performed on the filter statistical information matrices R or Q, which are tuned using an Adaptive Neuro Fuzzy Inference System (ANFIS) based on the filter innovation sequence through a covariance-matching technique. The test results show a better performance of the KF-NFA when it is compared with a traditional Kalman Filter (T-KF). This work is being developed in the context of a Pedestrian Dead Reckoning (PDR) algorithm for localization based services (LBS), currently in progress.
引用
收藏
页码:479 / 488
页数:10
相关论文
共 28 条
[21]   Fuzzy Adaptive Extended Kalman Filter for Miniature Attitude and Heading Reference System [J].
Qin, Wei ;
Yuan, Weizheng ;
Chang, Honglong ;
Xue, Liang ;
Yuan, Guangmin .
2009 4TH IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS, VOLS 1 AND 2, 2009, :1026-1030
[22]  
Ruotsalainen L, 2012, I NAVIG SAT DIV INT, P2454
[23]   Global Pose Estimation using Multi-Sensor Fusion for Outdoor Augmented Reality [J].
Schall, Gerhard ;
Wagner, Daniel ;
Reitmayr, Gerhard ;
Taichmann, Elise ;
Wieser, Manfred ;
Schmalstieg, Dieter ;
Hofmann-Wellenhof, Bernhard .
2009 8TH IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY - SCIENCE AND TECHNOLOGY, 2009, :153-+
[24]  
Stearns H, 2011, P AMER CONTR CONF, P3490
[25]  
Tanveer F., 2011, Journal of Space Technology, V1, P45
[26]  
Xiaoming Hu, 2011, 2011 IEEE International Symposium on VR Innovation (ISVRI), P151, DOI 10.1109/ISVRI.2011.5759620
[27]  
Yadav N, 2011, IEEE SENSOR, P1433
[28]  
Zampella F., 2012, IEEE ION S POS LOC N