A Bound on the Number of Edges in Graphs Without an Even Cycle

被引:27
作者
Bukh, Boris [1 ]
Jiang, Zilin [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
关键词
Graph theory;
D O I
10.1017/S0963548316000134
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that, for each fixed k, an n-vertex graph not containing a cycle of length 2k has at most 80 root k log k (.) n(1+1/k) + O(n) edges.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 19 条
[1]   MINIMAL REGULAR GRAPHS OF GIRTHS 8 AND 12 [J].
BENSON, CT .
CANADIAN JOURNAL OF MATHEMATICS, 1966, 18 (05) :1091-&
[2]   TURAN NUMBERS FOR FREE GRAPHS: TOPOLOGICAL OBSTRUCTIONS AND ALGEBRAIC CONSTRUCTIONS [J].
Blagojevic, Pavle V. M. ;
Bukh, Boris ;
Karasev, Roman .
ISRAEL JOURNAL OF MATHEMATICS, 2013, 197 (01) :199-214
[3]  
Bondy J. A., 1974, Journal of Combinatorial Theory, Series B, V16, P97, DOI 10.1016/0095-8956(74)90052-5
[4]   ON GRAPHS THAT DO NOT CONTAIN A THOMSEN GRAPH [J].
BROWN, WG .
CANADIAN MATHEMATICAL BULLETIN, 1966, 9 (03) :281-&
[5]  
ERDOS P, 1962, MAGYAR TUD AKAD MAT, V7, P623
[6]  
ERDOS P, 1938, IZVESTIYA NAUSTNO IS, V2, P74
[7]  
Erdos Paul, 1964, Extremal problems in graph theory, P29
[8]   On the Turan number for the hexagon [J].
Fueredi, Zoltan ;
Naor, Assaf ;
Verstraeate, Jacques .
ADVANCES IN MATHEMATICS, 2006, 203 (02) :476-496
[9]  
Füredi Z, 2013, BOLYAI SOC MATH STUD, V25, P169
[10]  
Keevash P., 2011, LONDON MATH SOC LECT, V392, P83