Synthesis and characterization of daunorubicin modified ZnO/PVP nanorods and its photodynamic action

被引:25
作者
Hariharan, R. [1 ]
Senthilkumar, S. [1 ]
Suganthi, A. [2 ]
Rajarajan, M. [1 ]
机构
[1] Cardamom Planters Assoc Coll, PG Dept Chem, Bodinayakanur 625513, Tamil Nadu, India
[2] Thiagarajar Coll, PG & Res Dept Chem, Madurai 625009, Tamil Nadu, India
关键词
ZnO nano; Surface modification; Daunorubicin; Singlet oxygen; Photoinactivation; SINGLET OXYGEN; ZNO NANOPARTICLES; IN-VITRO; CANCER-CELLS; NANOMATERIALS; SURFACTANT; DEPENDENCE; MORPHOLOGY; TOXICITY; RADICALS;
D O I
10.1016/j.jphotochem.2012.11.017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanomaterials have widely been used in the field of biological and biomedicine, such as tissue imaging, diagnosis and cancer therapy. The aim of this study is to investigate cytotoxicity and photodynamic effect of combined application of polyvinyl pyrrolidone (PVP) modified ZnO nanorods with anticancer drug daunorubicin (DNR) in photodynamic therapy (PDT). Daunorubicin (DNR) has a broad spectrum of anticancer activity, but it is limited in clinical application due to its serious side effects. In DNR-ZnO/PVP nanocomposites, ZnO/PVP nanorods act as drug carrier of DNR in drug delivery system (DNR-ZnO/PVP nanocomposites). This drug delivery system induced remarkable improvement in anticancer activity, as demonstrated by MTT assay using 3-(4,5-dimethylthiazol-2yl)-2,5 diphenyl tetrazolium bromide (MTT reagent). This has been also demonstrated by antibacterial activity and DNA cleavage study. The findings suggest that DNR delivery strategy is a promising approach to cancer therapy. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:107 / 115
页数:9
相关论文
共 59 条
[51]   ANTIBODY MAGNETITE NANOPARTICLES - IN-VITRO CHARACTERIZATION OF A POTENTIAL TUMOR-SPECIFIC CONTRAST AGENT FOR MAGNETIC-RESONANCE-IMAGING [J].
TIEFENAUER, LX ;
KUHNE, G ;
ANDRES, RY .
BIOCONJUGATE CHEMISTRY, 1993, 4 (05) :347-352
[52]   Near-IR luminescence of monolayer-protected metal clusters [J].
Wang, GL ;
Huang, T ;
Murray, RW ;
Menard, L ;
Nuzzo, RG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (03) :812-813
[53]   Nanoparticles for Tumor Targeted Therapies and Their Pharmacokinetics [J].
Wang, Jianqiu ;
Sui, Meihua ;
Fan, Weimin .
CURRENT DRUG METABOLISM, 2010, 11 (02) :129-141
[54]   Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy [J].
Wang, SZ ;
Gao, RM ;
Zhou, FM ;
Selke, M .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (04) :487-493
[55]   Advances and Prospect of Nanotechnology in Stem Cells [J].
Wang, Zheng ;
Ruan, Jing ;
Cui, Daxiang .
NANOSCALE RESEARCH LETTERS, 2009, 4 (07) :593-605
[56]   Hierarchically assembled porous ZnO nanoparticles: Synthesis, surface energy, and photocatalytic activity [J].
Xu, Fen ;
Zhang, Peng ;
Navrotsky, Alexandra ;
Yuan, Zhong-Yong ;
Ren, Tie-Zhen ;
Halasa, Matej ;
Su, Bao-Lian .
CHEMISTRY OF MATERIALS, 2007, 19 (23) :5680-5686
[57]   Inorganic nanoparticles for predictive oncology of breast cancer [J].
Yezhelyev, M. ;
Yacoub, R. ;
O'Regan, R. .
NANOMEDICINE, 2009, 4 (01) :83-103
[58]   A strategy for ZnO nanorod mediated multi-mode cancer treatment [J].
Zhang, Haijun ;
Chen, Baoan ;
Jiang, Hui ;
Wang, Cailian ;
Wang, Huangping ;
Wang, Xuemei .
BIOMATERIALS, 2011, 32 (07) :1906-1914
[59]   Phototoxicity of Zinc Oxide Nanoparticle Conjugates in Human Ovarian Cancer NIH: OVCAR-3 Cells [J].
Zhang, Yongbin ;
Chen, Wei ;
Wang, Shaopeng ;
Liu, Yuanfang ;
Pope, Carey .
JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2008, 4 (04) :432-438