Robust staggered band alignment in one-dimensional van der Waals heterostructures: binary compound nanoribbons in nanotube

被引:8
作者
Gong, Ming [1 ]
Zhang, Guang-Ping [2 ,3 ]
Hu, Hui Hui [1 ]
Kou, Liangzhi [4 ]
Dou, Kun Peng [1 ]
Shi, Xing-Qiang [5 ]
机构
[1] Ocean Univ China, Coll Informat Sci & Engn, Qingdao 266100, Shandong, Peoples R China
[2] Shandong Normal Univ, Sch Phys & Elect, Shandong Key Lab Med Phys & Image Proc, Jinan 250358, Shandong, Peoples R China
[3] Shandong Normal Univ, Sch Phys & Elect, Shandong Prov Engn & Tech Ctr Light Manipulat, Jinan 250358, Shandong, Peoples R China
[4] Queensland Univ Technol, Sch Chem Phys & Mech Engn, Gardens Point Campus, Brisbane, Qld 4001, Australia
[5] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
基金
中国博士后科学基金;
关键词
GRAPHENE NANORIBBONS; CHARGE SEPARATION; ELECTRONIC-STRUCTURES; CARBON; GAP;
D O I
10.1039/c9tc00766k
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Investigations of van der Waals (vdW) heterostructures based on distinct low-dimensional materials have attracted significant attention for higher performance devices. Here we use density functional theory computations to scrutinize the band alignment in one-dimensional (1D) vdW heterostructures. In particular, using nanoribbons (NRs) encapsulated inside nanotubes (NTs) based on ten binary-compounds of group IV-IV and group III-V elements, we identified both momentum-matched and -mismatched type II heterostructures with gaps varying from 0.56 eV to 4.37 eV. In addition, we demonstrate a substantial reduction (up to near 0.95 eV) in the staggered band gap of BN compounds by both transverse electric field and longitudinal tensile strain. These findings are favorable for enhancing light harvesting through a wide spectrum and reducing the carrier recombination; our designed heterostructures are expected to offer opportunities for photocatalytic water splitting with safe storage of H-2 products inside the NTs.
引用
收藏
页码:3829 / 3836
页数:8
相关论文
共 47 条
[1]   Efficient Gate-tunable light-emitting device made of defective boron nitride nanotubes: from ultraviolet to the visible [J].
Attaccalite, Claudio ;
Wirtz, Ludger ;
Marini, Andrea ;
Rubio, Angel .
SCIENTIFIC REPORTS, 2013, 3
[2]   HYBRIDIZATION EFFECTS AND METALLICITY IN SMALL RADIUS CARBON NANOTUBES [J].
BLASE, X ;
BENEDICT, LX ;
SHIRLEY, EL ;
LOUIE, SG .
PHYSICAL REVIEW LETTERS, 1994, 72 (12) :1878-1881
[3]   Ultrafast Charge Separation and Indirect Exciton Formation in a MoS2-MoSe2 van der Waals Heterostructure [J].
Ceballos, Frank ;
Bellus, Matthew Z. ;
Chiu, Hsin-Ying ;
Zhao, Hui .
ACS NANO, 2014, 8 (12) :12717-12724
[4]   Band gap modification of single-walled carbon nanotube and boron nitride nanotube under a transverse electric field [J].
Chen, CW ;
Lee, MH ;
Clark, SJ .
NANOTECHNOLOGY, 2004, 15 (12) :1837-1843
[5]  
Chuvilin A, 2011, NAT MATER, V10, P687, DOI [10.1038/nmat3082, 10.1038/NMAT3082]
[6]   Van der Waals heterostructures [J].
Geim, A. K. ;
Grigorieva, I. V. .
NATURE, 2013, 499 (7459) :419-425
[7]   Boron Nitride Nanotubes and Nanosheets [J].
Golberg, Dmitri ;
Bando, Yoshio ;
Huang, Yang ;
Terao, Takeshi ;
Mitome, Masanori ;
Tang, Chengchun ;
Zhi, Chunyi .
ACS NANO, 2010, 4 (06) :2979-2993
[8]   A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J].
Grimme, Stefan ;
Antony, Jens ;
Ehrlich, Stephan ;
Krieg, Helge .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15)
[9]   Strain-mediated type-I/type-II transition in MXene/Blue phosphorene van der Waals heterostructures for flexible optical/electronic devices [J].
Guo, Zhonglu ;
Miao, Naihua ;
Zhou, Jian ;
Sa, Baisheng ;
Sun, Zhimei .
JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (04) :978-984
[10]   Work Functions of Boron Nitride Nanoribbons: First-Principles Study [J].
He, Chaoyu ;
Yu, Zhizhou ;
Sun, L. Z. ;
Zhong, J. X. .
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2012, 9 (01) :16-22