Distributed Thermal Monitoring of Wind Turbine Power Electronic Modules Using FBG Sensing Technology

被引:31
作者
Mohammed, Anees [1 ]
Hu, Borong [2 ]
Hu, Zedong [2 ]
Djurovic, Sinisa [1 ]
Ran, Li [2 ]
Barnes, Mike [1 ]
Mawby, Philip A. [2 ]
机构
[1] Univ Manchester, Sch Elect & Elect Engn, Manchester, Lancs, England
[2] Univ Warwick, Sch Engn, Coventry, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Fiber gratings; Temperature sensors; Temperature measurement; Monitoring; Power electronic module; temperature monitoring; distributing thermal sensing; fibre Bragg grating temperature sensors (FBG); RELIABILITY; FAILURE;
D O I
10.1109/JSEN.2020.2992668
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper reports a distributed thermal monitoring scheme for power electronic modules (PEMs) in wind turbine converters. The sensing system is based on utilizing electrically non-conductive and electromagnetic interference immune fiber Bragg Grating (FBG) sensing technology embedded in the PEM baseplate. The design and implementation features of the proposed scheme are presented first. The scheme is then applied in a commercial PEM operating within an inverter bridge, equipped also with a conventional distributed thermal monitoring system using a multiple point thermo-couple (TC) sensor suite. A range of tests are performed to evaluate the performance of the FBG distributed thermal monitoring system and correlate it to TC measurements under steady-state and transient operating conditions representative of PEM operation in an actual wind turbine application. It is shown that the proposed FBG monitoring system can offer practical operational improvements in establishment of distributed thermal sensing schemes for wind turbine PEM.
引用
收藏
页码:9886 / 9894
页数:9
相关论文
共 30 条
[1]  
Allil R.C.S.B., 2013, CURRENT TRENDS SHORT, P133
[2]   Application of a Heat Flux Sensor in Wind Power Electronics [J].
Baygildina, Elvira ;
Smirnova, Liudmila ;
Murashko, Kirill ;
Juntunen, Raimo ;
Mityakov, Andrey ;
Kuisma, Mikko ;
Pyrhonen, Olli ;
Peltoniemi, Pasi ;
Hynynen, Katja ;
Mityakov, Vladimir ;
Sapozhnikov, Sergey .
ENERGIES, 2016, 9 (06)
[3]   Monitoring the junction temperature of an IGBT through direct measurement using a fiber Bragg grating [J].
Bazzo, Joao Paulo ;
Lukasievicz, Tiago ;
Vogt, Marcio ;
de Oliveira, Valmir ;
Kalinowski, Hypolito Jose ;
Cardozo da Silva, Jean Carlos .
21ST INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS, 2011, 7753
[4]   Selected failure mechanisms of modern power modules [J].
Ciappa, M .
MICROELECTRONICS RELIABILITY, 2002, 42 (4-5) :653-667
[5]  
Fuchs FW, 2003, IEEE IND ELEC, P1378
[6]   A Temperature Gradient-Based Potential Defects Identification Method for IGBT Module [J].
Gao, Bing ;
Yang, Fan ;
Chen, Minyou ;
Ran, Li ;
Ullah, Irfan ;
Xu, Shengyou ;
Mawby, Philip .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2017, 32 (03) :2227-2242
[7]  
Hjort T., 2011, Patent Appl, Patent No. 20267598
[8]  
Hu B., 2019, P 9 INT EN C REMOO H, P16
[9]  
Hu BR, 2019, IEEE ENER CONV, P3769, DOI [10.1109/ECCE.2019.8912666, 10.1109/ecce.2019.8912666]
[10]   Failure and Reliability Analysis of a SiC Power Module Based on Stress Comparison to a Si Device [J].
Hu, Borong ;
Gonzalez, Jose Ortiz ;
Ran, Li ;
Ren, Hai ;
Zeng, Zheng ;
Lai, Wei ;
Gao, Bing ;
Alatise, Olayiwola ;
Lu, Hua ;
Bailey, Christopher ;
Mawby, Phil .
IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, 2017, 17 (04) :727-737