Design Strategy of Quantum Dot Thin-Film Solar Cells

被引:32
作者
Kim, Taewan [1 ,2 ,3 ]
Lim, Seyeong [1 ]
Yun, Sunhee [1 ]
Jeong, Sohee [2 ,3 ]
Park, Taiho [1 ]
Choi, Jongmin [4 ]
机构
[1] Pohang Univ Sci & Technol, Chem Engn, Pohang 37673, South Korea
[2] Sungkyunkwan Univ, Dept Energy Sci, Suwon 16419, South Korea
[3] Sungkyunkwan Univ, Ctr Artificial Atoms, Suwon 16419, South Korea
[4] Daegu Gyeongbuk Inst Sci & Technol, Energy Sci & Engn, Daegu 42988, South Korea
关键词
electrics; optics; photovoltaic design; quantum dots; thin-film solar cells; REFRACTIVE-INDEX; HIGHLY EFFICIENT; PBS NANOCRYSTALS; LEAD SULFIDE; ENERGY-GAP; AIR; LAYER; PERFORMANCE; SURFACE; LIMIT;
D O I
10.1002/smll.202002460
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Quantum dots (QDs) are emerging photovoltaic materials that display exclusive characteristics that can be adjusted through modification of their size and surface chemistry. However, designing a QD-based optoelectronic device requires specialized approaches compared with designing conventional bulk-based solar cells. In this paper, design considerations for QD thin-film solar cells are introduced from two different viewpoints: optics and electrics. The confined energy level of QDs contributes to the adjustment of their band alignment, enabling their absorption characteristics to be adapted to a specific device purpose. However, the materials selected for this energy adjustment can increase the light loss induced by interface reflection. Thus, management of the light path is important for optical QD solar cell design, whereas surface modification is a crucial issue for the electrical design of QD solar cells. QD thin-film solar cell architectures are fabricated as a heterojunction today, and ligand exchange provides suitable doping states and enhanced carrier transfer for the junction. Lastly, the stability issues and methods on QD thin-film solar cells are surveyed. Through these strategies, a QD solar cell study can provide valuable insights for future-oriented solar cell technology.
引用
收藏
页数:13
相关论文
共 120 条
[1]   Ligand Exchange and the Stoichiometry of Metal Chalcogenide Nanocrystals: Spectroscopic Observation of Facile Metal-Carboxylate Displacement and Binding [J].
Anderson, Nicholas C. ;
Hendricks, Mark P. ;
Choi, Joshua J. ;
Owen, Jonathan S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (49) :18536-18548
[2]   Efficient Hybrid Tandem Solar Cells Based on Optical Reinforcement of Colloidal Quantum Dots with Organic Bulk Heterojunctions [J].
Aqoma, Havid ;
Imran, Imil Fadli ;
Al Mubarok, Muhibullah ;
Hadmojo, Wisnu Tantyo ;
Do, Young Rag ;
Jang, Sung-Yeon .
ADVANCED ENERGY MATERIALS, 2020, 10 (07)
[3]   High-Efficiency Photovoltaic Devices using Trap-Controlled Quantum-Dot Ink prepared via Phase-Transfer Exchange [J].
Aqoma, Havid ;
Al Mubarok, Muhibullah ;
Hadmojo, Wisnu Tantyo ;
Lee, Eun-Hye ;
Kim, Tae-Wook ;
Ahn, Tae Kyu ;
Oh, Seung-Hwan ;
Jang, Sung-Yeon .
ADVANCED MATERIALS, 2017, 29 (19)
[4]   Color-tuned and transparent colloidal quantum dot solar cells via optimized multilayer interference [J].
Arinze, Ebuka S. ;
Qiu, Botong ;
Palmquist, Nathan ;
Cheng, Yan ;
Lin, Yida ;
Nyirjesy, Gabrielle ;
Qian, Gary ;
Thon, Susanna M. .
OPTICS EXPRESS, 2017, 25 (04) :A101-A112
[5]   A hydro/oxo-phobic top hole-selective layer for efficient and stable colloidal quantum dot solar cells [J].
Baek, Se-Woong ;
Lee, Sang-Hoon ;
Song, Jung Hoon ;
Kim, Changjo ;
Ha, Ye-Seol ;
Shin, Hyeyoung ;
Kim, Hyungjun ;
Jeong, Sohee ;
Lee, Jung-Yong .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (08) :2078-2084
[6]   A Resonance-Shifting Hybrid n-Type Layer for Boosting Near-Infrared Response in Highly Efficient Colloidal Quantum Dots Solar Cells [J].
Baek, Se-Woong ;
Song, Jung Hoon ;
Choi, Woong ;
Song, Hyunjoon ;
Jeong, Sohee ;
Lee, Jung-Yong .
ADVANCED MATERIALS, 2015, 27 (48) :8102-8108
[7]   Quantum Dot Sensitized Solar Cells. A Tale of Two Semiconductor Nanocrystals: CdSe and CdTe [J].
Bang, Jin Ho ;
Kamat, Prashant V. .
ACS NANO, 2009, 3 (06) :1467-1476
[8]   Comparing Halide Ligands in PbS Colloidal Quantum Dots for Field-Effect Transistors and Solar Cells [J].
Bederak, Dmytro ;
Balazs, Daniel M. ;
Sukharevska, Nataliia V. ;
Shulga, Artem G. ;
Abdu-Aguye, Mustapha ;
Dirin, Dmitry N. ;
Kovalenko, Maksym V. ;
Loi, Maria A. .
ACS APPLIED NANO MATERIALS, 2018, 1 (12) :6882-6889
[9]  
Bernechea M, 2016, NAT PHOTONICS, V10, P521, DOI [10.1038/nphoton.2016.108, 10.1038/NPHOTON.2016.108]
[10]   Colloidal Quantum Dot Tandem Solar Cells Using Chemical Vapor Deposited Graphene as an Atomically Thin Intermediate Recombination Layer [J].
Bi, Yu ;
Pradhan, Santanu ;
Zafer Akgul, Mehmet ;
Gupta, Shuchi ;
Stavrinadis, Alexandros ;
Wang, Jianjun ;
Konstantatos, Gerasimos .
ACS ENERGY LETTERS, 2018, 3 (07) :1753-1759