The Bahri-Coron Theorem for Fractional Yamabe-Type Problems

被引:16
作者
Abdelhedi, Wael [1 ]
Chtioui, Hichem [1 ]
Hajaiej, Hichem [2 ]
机构
[1] Fac Sci Sfax, Dept Math, Sfax 3018, Tunisia
[2] Calif State Univ Los Angeles, Dept Math, 5151 State Univ Dr, Los Angeles, CA 90032 USA
关键词
Fractional PDE; Variational Method; Critical Exponent; Loss of Compactness; EXTENSION PROBLEM; ELLIPTIC PROBLEM; MOVING SPHERES; EQUATIONS; DERIVATIVES; INEQUALITY; LAPLACIAN; EXPONENT;
D O I
10.1515/ans-2017-6035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the following fractional Yamabe-type equation: {A(s)u = u (n+2s/n-2s), u > 0 in Omega, u = on partial derivative Omega, Here Omega is a regular bounded domain of R-n, n >= 2, and A(s), s is an element of(0, 1), represents the fractional Laplacian operator (-Delta)(s) in Omega with zero Dirichlet boundary condition. We investigate the effect of the topology of Omega on the existence of solutions. Our result can be seen as the fractional counterpart of the Bahri-Coron theorem[3].
引用
收藏
页码:393 / 407
页数:15
相关论文
共 19 条
[1]   ON A NONLINEAR ELLIPTIC EQUATION INVOLVING THE CRITICAL SOBOLEV EXPONENT - THE EFFECT OF THE TOPOLOGY OF THE DOMAIN [J].
BAHRI, A ;
CORON, JM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (03) :253-294
[2]  
Bahri A., 1996, Topics in Geometry, Progr. Nonlinear Differential Equations Appl., V20, P1
[3]  
Bahri A., 1989, Research Notes in Mathematics, V182
[4]   A concave-convex elliptic problem involving the fractional Laplacian [J].
Braendle, C. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) :39-71
[5]   Positive solutions of nonlinear problems involving the square root of the Laplacian [J].
Cabre, Xavier ;
Tan, Jinggang .
ADVANCES IN MATHEMATICS, 2010, 224 (05) :2052-2093
[6]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[7]   Regularity of Radial Extremal Solutions for Some Non-Local Semilinear Equations [J].
Capella, Antonio ;
Davila, Juan ;
Dupaigne, Louis ;
Sire, Yannick .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (08) :1353-1384
[8]   Classification of solutions for an integral equation [J].
Chen, WX ;
Li, CM ;
Ou, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (03) :330-343
[9]   Best constants for Sobolev inequalities for higher order fractional derivatives [J].
Cotsiolis, A ;
Tavoularis, NK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 295 (01) :225-236
[10]  
Hajaiej H., 2011, RIMS KOKYUROKU BES B, P159