Estimating hepatitis C prevalence in England and Wales by synthesizing evidence from multiple data sources. Assessing data conflict and model fit

被引:33
作者
Sweeting, M. J. [1 ]
De Angelis, D. [1 ,2 ]
Hickman, M. [3 ]
Ades, A. E. [4 ]
机构
[1] Inst Publ Hlth, MRC, Biostat Unit, Cambridge CB2 0SR, England
[2] Hlth Protect Agcy Ctr Infect, Stat Unit, London NW9 5EQ, England
[3] Univ Bristol, Dept Social Med, Bristol BS8 2SP, Avon, England
[4] Univ Bristol, MRC Hlth Serv Res Collaborat, Bristol BS8 2PR, Avon, England
基金
英国医学研究理事会;
关键词
cross-validation; evidence synthesis; goodness-of-fit; hepatitis C; prevalence;
D O I
10.1093/biostatistics/kxn004
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multiparameter evidence synthesis is becoming widely used as a way of combining evidence from multiple and often disparate sources of information concerning a number of parameters. Synthesizing data in one encompassing model allows propagation of evidence and learning. We demonstrate the use of such an approach in estimating the number of people infected with the hepatitis C virus (HCV) in England and Wales. Data are obtained from seroprevalence studies conducted in different subpopulations. Each subpopulation is modeled as a composition of 3 main HCV risk groups (current injecting drug users (IDUs), ex-IDUs, and non-IDUs). Further, data obtained on the prevalence (size) of each risk group provide an estimate of the prevalence of HCV in the whole population. We simultaneously estimate all model parameters through the use of Bayesian Markov chain Monte Carlo techniques. The main emphasis of this paper is the assessment of evidence consistency and investigation of the main drivers for model inferences. We consider a cross-validation technique to reveal data conflict and leverage when each data source is in turn removed from the model.
引用
收藏
页码:715 / 734
页数:20
相关论文
共 34 条
  • [1] Markov chain Monte Carlo estimation of a multiparameter decision model: Consistency of evidence and the accurate assessment of uncertainty
    Ades, AE
    Cliffe, S
    [J]. MEDICAL DECISION MAKING, 2002, 22 (04) : 359 - 371
  • [2] HCV prevalence in pregnant women in the UK
    Ades, AE
    Parker, S
    Walker, J
    Cubitt, WD
    Jones, R
    [J]. EPIDEMIOLOGY AND INFECTION, 2000, 125 (02) : 399 - 405
  • [3] Multiparameter evidence synthesis in epidemiology and medical decision-making: current approaches
    Ades, AE
    Sutton, AJ
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2006, 169 : 5 - 35
  • [4] [Anonymous], HEP C STRAT ENGL
  • [5] [Anonymous], 1997, NIDA RES MONOGRAPH
  • [6] [Anonymous], 1997, SCIENCES, DOI DOI 10.1016/S0038-0121(97)00011-6
  • [7] A national survey of genitourinary medicine clinic attenders provides little evidence of sexual transmission of hepatitis C virus infection
    Balogun, MA
    Ramsay, ME
    Parry, JV
    Donovan, L
    Andrews, NJ
    Newham, JA
    McGarrigle, C
    Harris, KA
    Teo, CG
    [J]. SEXUALLY TRANSMITTED INFECTIONS, 2003, 79 (04) : 301 - 306
  • [8] The prevalence and genetic diversity of hepatitis C infection in antenatal clinic attenders in two regions of England
    Balogun, MA
    Ramsay, ME
    Parry, JV
    Donovan, L
    Andrews, NJ
    Newham, JA
    Cliffe, S
    Harris, KA
    Teo, CG
    [J]. EPIDEMIOLOGY AND INFECTION, 2000, 125 (03) : 705 - 712
  • [9] P values for composite null models
    Bayarri, MJ
    Berger, JO
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (452) : 1127 - 1142
  • [10] Sentinel laboratory surveillance of hepatitis C antibody testing in England: understanding the epidemiology of HCV infection
    Brant, L. J.
    Hurrelle, M.
    Balogun, M. A.
    Klapper, P.
    Ahmad, F.
    Boxall, E.
    Hale, A.
    Hollyoak, V.
    Ibrahim, I. B.
    Irving, W.
    Meigh, R.
    Mutton, K. J.
    Patel, B. C.
    Paver, W. K.
    Pugh, S.
    Taylor, C.
    Turner, A. J.
    Ramsay, M. E.
    [J]. EPIDEMIOLOGY AND INFECTION, 2007, 135 (03) : 417 - 426