Classification of Very High Resolution SAR Images of Urban Areas Using Copulas and Texture in a Hierarchical Markov Random Field Model

被引:56
|
作者
Voisin, Aurelie [1 ]
Krylov, Vladimir A. [1 ]
Moser, Gabriele [2 ]
Serpico, Sebastiano B. [2 ]
Zerubia, Josiane [1 ]
机构
[1] Inst Natl Rech Informat & Automat, Ayin Team, F-06902 Sophia Antipolis, France
[2] Univ Genoa, Dipartimento Ingn & Biofis Elettron, I-16145 Genoa, Italy
关键词
Hierarchical Markov random fields (MRFs); supervised classification; synthetic aperture radar (SAR); textural features; urban areas; wavelets;
D O I
10.1109/LGRS.2012.2193869
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter addresses the problem of classifying synthetic aperture radar (SAR) images of urban areas by using a supervised Bayesian classification method via a contextual hierarchical approach. We develop a bivariate copula-based statistical model that combines amplitude SAR data and textural information, which is then plugged into a hierarchical Markov random field model. The contribution of this letter is thus the development of a novel hierarchical classification approach that uses a quad-tree model based on wavelet decomposition and an innovative statistical model. The performance of the developed approach is illustrated on a high-resolution satellite SAR image of urban areas.
引用
收藏
页码:96 / 100
页数:5
相关论文
共 50 条
  • [1] Classification of very high resolution SAR images of urban areas by dictionary-based mixture models, copulas and Markov random fields using textural features
    Voisin, Aurelie
    Moser, Gabriele
    Krylov, Vladimir A.
    Serpico, Sebastiano B.
    Zerubia, Josiane
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XVI, 2010, 7830
  • [2] Hierarchical classification of SAR data using a markov random field model
    Crawford, Melba M.
    Ricard, Michael R.
    Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation, : 81 - 86
  • [3] Hierarchical classification of SAR data using a Markov random field model
    Crawford, MM
    Ricard, MR
    1998 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION, 1998, : 81 - 86
  • [4] A STOCHASTIC MODEL FOR VERY HIGH RESOLUTION SAR AMPLITUDE IMAGES OF URBAN AREAS
    Di Martino, Gerardo
    Iodice, Antonio
    Riccio, Daniele
    Ruello, Giuseppe
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 942 - 945
  • [5] Texture analysis and classification of SAR images of urban areas
    Dekker, RJ
    2ND GRSS/ISPRS JOINT WORKSHOP ON REMOTE SENSING AND DATA FUSION OVER URBAN AREAS, 2003, : 258 - 262
  • [6] Markovian Change Detection of Urban Areas Using Very High Resolution Complex SAR Images
    Baselice, Fabio
    Ferraioli, Giampaolo
    Pascazio, Vito
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (05) : 995 - 999
  • [7] Fusion of very high resolution SAR and optical images for the monitoring of urban areas
    Lopez, Carlos Villamil
    Anglberger, Harald
    Stilla, Uwe
    2017 JOINT URBAN REMOTE SENSING EVENT (JURSE), 2017,
  • [8] Power Spectra of Very High Resolution SAR Amplitude Images of Urban Areas
    Di Martino, Gerardo
    Iodice, Antonio
    Riccio, Daniele
    Ruello, Giuseppe
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (07) : 2723 - 2731
  • [9] A new statistical model for Markovian classification of urban areas in high-resolution SAR images
    Tison, C
    Nicolas, JM
    Tupin, F
    Maître, H
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (10): : 2046 - 2057
  • [10] Unsupervised Classification of Polarimetric SAR Images Using Bayesian Nonparametric Model and Markov Random Field
    Bdiri, Wassim
    Bouhlel, Nizar
    Meric, Stephane
    Pottier, Eric
    Kallel, Fathi
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 2212 - 2216