Molecular dynamics study of the thermodynamic and kinetic properties of the solid-liquid interface in FeMn

被引:19
作者
Raman, S. [1 ]
Hoyt, J. J. [2 ,4 ]
Saidi, P. [3 ]
Asta, M. [4 ]
机构
[1] ExxonMobil Res & Engn Co, Corp Strateg Res, Annandale, NJ 08801 USA
[2] McMaster Univ, Dept Mat Sci & Engn, Hamilton, ON, Canada
[3] Queens Univ, Dept Mech & Mat Engn, Kingston, ON, Canada
[4] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
关键词
Molecular dynamics; Capillary fluctuation method; Solid-liquid interfaces; Solute trapping; Solidification; SOLIDIFICATION CRACKING SUSCEPTIBILITY; CRYSTAL-MELT INTERFACES; SURFACE-TENSION; FREE-ENERGY; STRUCTURAL MODEL; DENDRITIC GROWTH; AL-SI; CU; MN; STEEL;
D O I
10.1016/j.commatsci.2020.109773
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The solid-liquid phase equilibria as a function of temperature and composition has been computed for the Fe-Mn system using a semi-grand canonical Monte Carlo technique. Interaction between atoms were modeled using a second nearest neighbor modified embedded atom method potential. In addition, the excess solid-liquid interfacial free energy (gamma) and its anisotropy has been computed from the capillary fluctuation method. The results indicate that there is very little variation in gamma with temperature/composition. We also propose a new MD simulation method for computing solute trapping behavior that is able to access relatively low interface velocities. The segregation coefficient as a function of velocity for the Fe-Mn system was determined for three temperatures and the results are discussed within the framework of previously proposed theoretical models.
引用
收藏
页数:7
相关论文
共 57 条
[1]   Crystal-melt interfacial free energy of binary hard spheres from capillary fluctuations [J].
Amini, Majeed ;
Laird, Brian B. .
PHYSICAL REVIEW B, 2008, 78 (14)
[2]  
[Anonymous], 2014, THESIS
[3]  
[Anonymous], [No title captured]
[4]   Calculation of alloy solid-liquid interfacial free energies from atomic-scale simulations [J].
Asta, M ;
Hoyt, JJ ;
Karma, A .
PHYSICAL REVIEW B, 2002, 66 (10) :1001011-1001014
[5]   CONTINUOUS GROWTH-MODEL FOR INTERFACE MOTION DURING ALLOY SOLIDIFICATION [J].
AZIZ, MJ ;
KAPLAN, T .
ACTA METALLURGICA, 1988, 36 (08) :2335-2347
[6]   MODEL FOR SOLUTE REDISTRIBUTION DURING RAPID SOLIDIFICATION [J].
AZIZ, MJ .
JOURNAL OF APPLIED PHYSICS, 1982, 53 (02) :1158-1168
[7]   Atomistic simulations of crystal-melt interfaces in a model binary alloy: Interfacial free energies, adsorption coefficients, and excess entropy [J].
Becker, C. A. ;
Olmsted, D. L. ;
Asta, M. ;
Hoyt, J. J. ;
Foiles, S. M. .
PHYSICAL REVIEW B, 2009, 79 (05)
[8]   Equilibrium adsorption at crystal-melt interfaces in Lennard-Jones alloys [J].
Becker, CA ;
Asta, M ;
Hoyt, JJ ;
Foiles, SM .
JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (16)
[9]   Phase field simulation of equiaxed solidification in technical alloys [J].
Boettger, B. ;
Eiken, J. ;
Steinbach, I. .
ACTA MATERIALIA, 2006, 54 (10) :2697-2704
[10]   Density and surface tension of liquid ternary Ni-Cu-Fe alloys [J].
Brillo, J. ;
Egry, I. ;
Matsushita, T. .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2006, 27 (06) :1778-1791