Molecular mechanisms of flavonoid accumulation in germinating common bean (Phaseolus vulgaris) under salt stress

被引:12
|
作者
Zhang, Qi [1 ]
Zheng, Guangyue [1 ]
Wang, Qi [1 ]
Zhu, Jixing [1 ]
Zhou, Zhiheng [1 ]
Zhou, Wenshuo [1 ]
Xu, Junjie [1 ]
Sun, Haoyue [2 ]
Zhong, Jingwen [1 ]
Gu, Yanhua [1 ]
Yin, Zhengong [3 ]
Du, Yan-li [1 ]
Du, Ji-dao [1 ,4 ]
机构
[1] Heilongjiang Bayi Agr Univ, Agr Coll, Legume Crop Lab, Daqing, Peoples R China
[2] Heilongjiang Acad Agr Sci, Qiqihar Branch, Qiqihar, Peoples R China
[3] Heilongjiang Acad Agr Sci, Crop Resources Inst, Harbin, Peoples R China
[4] Natl Cereals Technol Engn Res Ctr, Daqing, Peoples R China
来源
FRONTIERS IN NUTRITION | 2022年 / 9卷
关键词
flavonoids (rutin) content; common bean; germinating; salt stress; mechanism; phenylpropanoid biosynthesis; flavonoid biosynthesis; ANTIOXIDANT ACTIVITY; ABIOTIC STRESS; EXPRESSION; BIOSYNTHESIS; ANTHOCYANIN; RUTIN; SEEDS; QUANTIFICATION; IDENTIFICATION; BIOCHEMISTRY;
D O I
10.3389/fnut.2022.928805
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Flavonoids are important secondary metabolites, active biomolecules in germinating beans, and have prominent applications in food and medicine due to their antioxidant effects. Rutin is a plant flavonoid with a wide biological activity range. In this study, flavonoid (rutin) accumulation and its related molecular mechanisms in germinating common bean (Phaseolus vulgaris) were observed at different time points (0-120 h) under salt stress (NaCl). The rutin content increased from germination onset until 96 h, after which a reducing trend was observed. Metabolome analysis showed that salt stress alters flavonoid content by regulating phenylpropanoid (ko00940) and flavonoid (ko00941) biosynthesis pathways, as well as their enzyme activities, including cinnamyl-alcohol dehydrogenase (CAD), peroxidase (POD), chalcone isomerase (CHI), and flavonol synthase (FLS). The RNA-seq and quantitative real-time PCR (qRT-PCR) analyses also showed that these two pathways were linked to changes in flavonoid content following salt treatment. These results reveal that salt stress effectively enhanced rutin content accumulation in germinating beans, hence it could be employed to enhance the functional quality of germinating common beans.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Impact of drought and salt stress on galactinol and raffinose family oligosaccharides in common bean (Phaseolus vulgaris)
    de Koning, Ramon
    Wils, Gertjan E.
    Kiekens, Raphael
    De Vuyst, Luc
    Angenon, Geert
    AOB PLANTS, 2023, 15 (04):
  • [2] Ammonium assimilation and ureide metabolism in common bean (Phaseolus vulgaris) nodules under salt stress
    Khadri, M
    Pliego, L
    Soussi, M
    Lluch, C
    Ocaña, A
    AGRONOMIE, 2001, 21 (6-7): : 635 - 643
  • [3] Exogenous melatonin enhances cell wall response to salt stress in common bean (Phaseolus vulgaris) and the development of the associated predictive molecular markers
    Zhang, Qi
    Qin, Bin
    Wang, Guang-da
    Zhang, Wen-jing
    Li, Ming
    Yin, Zhen-gong
    Yuan, Xiankai
    Sun, Hao-yue
    Du, Ji-dao
    Du, Yan-li
    Jia, Pengyu
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [4] Analysis of the transcriptome and metabolome reveals phenylpropanoid mechanism in common bean (Phaseolus vulgaris) responding to salt stress at sprout stage
    Zhang, Qi
    Wang, Shukun
    Qin, Bin
    Sun, Hao-yue
    Yuan, Xian-kai
    Wang, Qi
    Xu, Junjie
    Yin, Zhengong
    Du, Yan-li
    Du, Ji-dao
    Li, Caihua
    FOOD AND ENERGY SECURITY, 2023, 12 (05):
  • [5] Biochemical, physiological and phenological genetic analysis in common bean (Phaseolus vulgaris L.) under salt stress
    Torche, Yacine
    Blair, Matthew
    Saida, Chougui
    ANNALS OF AGRICULTURAL SCIENCE, 2018, 63 (02): : 153 - 161
  • [6] Alleviation of salt stress in common bean (Phaseolus vulgaris) by exogenous abscisic acid supply
    Khadri, Mariam
    Tejera, Noel A.
    Lluch, Carmen
    JOURNAL OF PLANT GROWTH REGULATION, 2006, 25 (02) : 110 - 119
  • [7] Alleviation of Salt Stress in Common Bean (Phaseolus vulgaris) by Exogenous Abscisic Acid Supply
    Mariam Khadri
    Noel A. Tejera
    Carmen Lluch
    Journal of Plant Growth Regulation, 2006, 25 : 110 - 119
  • [8] Transcriptome-based analysis of salt-related genes during the sprout stage of common bean (Phaseolus vulgaris) under salt stress conditions
    Zhang, Qi
    Li, Ming
    Xia, Chun Yang
    Zhang, Wen Jing
    Yin, Zhen Gong
    Zhang, You Li
    Fang, Qing Xi
    Liu, Yang Cheng
    Zhang, Ming Yu
    Zhang, Wen Hui
    Du, Ji Dao
    Du, Yan Li
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2021, 35 (01) : 1086 - 1098
  • [9] Differential Expression of Genes for Tolerance to Salt Stress in Common Bean (Phaseolus vulgaris L.)
    Eloísa Hernández-Lucero
    Aída Araceli Rodríguez-Hernández
    María Azucena Ortega-Amaro
    Juan Francisco Jiménez-Bremont
    Plant Molecular Biology Reporter, 2014, 32 : 318 - 327
  • [10] Differential Expression of Genes for Tolerance to Salt Stress in Common Bean (Phaseolus vulgaris L.)
    Hernandez-Lucero, Eloisa
    Araceli Rodriguez-Hernandez, Aida
    Azucena Ortega-Amaro, Maria
    Francisco Jimenez-Bremont, Juan
    PLANT MOLECULAR BIOLOGY REPORTER, 2014, 32 (02) : 318 - 327