Multiscale methods for the valuation of American options with stochastic volatility

被引:17
作者
Kunoth, Angela [1 ]
Schneider, Christian [1 ]
Wiechers, Katharina [1 ]
机构
[1] Univ Gesamthsch Paderborn, Inst Math, D-33098 Paderborn, Germany
基金
美国国家科学基金会;
关键词
American option pricing; stochastic volatility; Heston's model; parabolic boundary value problem; free boundary; monotone multigrid method; multigrid efficiency;
D O I
10.1080/00207160.2012.672732
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the efficient valuation of American options. We adopt Heston's approach for a model of stochastic volatility, leading to a generalized Black-Scholes equation called Heston's equation. Together with appropriate boundary conditions, this can be formulated as a parabolic boundary value problem with a free boundary, the optimal exercise price of the option. For its efficient numerical solution, we employ, among other multiscale methods, a monotone multigrid method based on linear finite elements in space and display corresponding numerical experiments.
引用
收藏
页码:1145 / 1163
页数:19
相关论文
共 48 条
[1]  
Achdou Y., 2005, SIAM SERIES FRONTIER
[2]   American option pricing under stochastic volatility: An empirical evaluation [J].
AitSahlia F. ;
Goswami M. ;
Guha S. .
Computational Management Science, 2010, 7 (2) :189-206
[3]   American option pricing under stochastic volatility: An efficient numerical approach [J].
AitSahlia F. ;
Goswami M. ;
Guha S. .
Computational Management Science, 2010, 7 (2) :171-187
[4]   Moment explosions in stochastic volatility models [J].
Andersen, Leif B. G. ;
Piterbarg, Vladimir V. .
FINANCE AND STOCHASTICS, 2007, 11 (01) :29-50
[5]  
[Anonymous], 2011, Options, Futures, and Other Derivatives
[6]  
[Anonymous], 1994, ITERATIVE SOLUTION L
[7]  
[Anonymous], MATH Z
[8]  
Apel T., 2001, VALUATION OPTIONS HE
[9]   STOCHASTIC VOLATILITY OPTION PRICING [J].
BALL, CA ;
ROMA, A .
JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS, 1994, 29 (04) :589-607
[10]   PRICING OF OPTIONS AND CORPORATE LIABILITIES [J].
BLACK, F ;
SCHOLES, M .
JOURNAL OF POLITICAL ECONOMY, 1973, 81 (03) :637-654