Approximation algorithm for coloring of dotted interval graphs

被引:3
作者
Yanovsky, Vladimir [1 ]
机构
[1] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 1A1, Canada
关键词
approximation algorithms; dotted interval graph; intersection graph; minimum coloring; microsatellite genotyping;
D O I
10.1016/j.ipl.2008.03.021
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Dotted interval graphs were introduced by Aumann et al. [Y. Aumann, M. Lewenstein, O. Melamud, R. Pinter, Z. Yakhini, Dotted interval graphs and high throughput genotyping, in: ACM-SIAM Symposium on Discrete Algorithms. SODA 2005, pp. 339-348] as a generalization of interval graphs. The problem of coloring these graphs found application in high-throughput genotyping. Jiang [M. Jiang, Approximating minimum coloring and maximum independent set in dotted interval graphs, Information Processing Letters 98 (2006) 29-33] improves the approximation ratio of Aumann et al. [Y. Aumann, M. Lewenstein, O. Melamud, R. Pinter, Z. Yakhini, Dotted interval graphs and high throughput genotyping, in: ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, pp. 339-348]. In this work we improve the approximation ratio of Jiang [M. Jiang, Approximating minimum coloring and maximum independent set in dotted interval graphs, Information Processing Letters 98 (2006) 29-33] and Aumarm et al. [Y. Aumann, M. Lewenstein, O. Melamud, R. Pinter, Z. Yakhini, Dotted interval graphs and high throughput genotyping, in: ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, pp. 339-348]. In the exposition we develop a generalization of the problem of finding the maximum number of non-attacking queens on a triangle. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:41 / 44
页数:4
相关论文
共 8 条
[1]  
AUMANN Y, ACM SIAM S DISCR ALG, P339
[2]   TESTING FOR CONSECUTIVE ONES PROPERTY, INTERVAL GRAPHS, AND GRAPH PLANARITY USING PQ-TREE ALGORITHMS [J].
BOOTH, KS ;
LUEKER, GS .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1976, 13 (03) :335-379
[3]  
BUTMAN A, SODA 2007, P268
[4]  
Golumbic M. C., 2004, Algorithmic Graph Theory and Perfect Graphs
[5]   Approximating minimum coloring and maximum independent set in dotted interval graphs [J].
Jiang, MH .
INFORMATION PROCESSING LETTERS, 2006, 98 (01) :29-33
[6]   ON THE HARDNESS OF APPROXIMATING MINIMIZATION PROBLEMS [J].
LUND, C ;
YANNAKAKIS, M .
JOURNAL OF THE ACM, 1994, 41 (05) :960-981
[7]  
NIVASCH G, 2005, MATH MAGAZINE DEC, P399
[8]   Strategies for microsatellite isolation: a review [J].
Zane, L ;
Bargelloni, L ;
Patarnello, T .
MOLECULAR ECOLOGY, 2002, 11 (01) :1-16