Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation

被引:31
作者
Gerard, Patrick [1 ]
Zhang, Zhifei [1 ,2 ]
机构
[1] Univ Paris 11, F-91405 Orsay, France
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2009年 / 91卷 / 02期
基金
中国国家自然科学基金;
关键词
Gross-Pitaevskii equation; Inverse scattering; Orbital stability; Dark solitons;
D O I
10.1016/j.matpur.2008.09.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the nonlinear orbital stability of the stationary traveling wave of the one-dimensional Gross-Pitaevskii equation by using Zakharov-Shabat's inverse scattering method. (C) 2008 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:178 / 210
页数:33
相关论文
共 14 条
[1]  
Bethuel F, 2004, J EUR MATH SOC, V6, P17
[2]  
Bethuel F, 1999, ANN I H POINCARE-PHY, V70, P147
[3]  
BETHUEL F, 2008, CONT MATH A IN PRESS
[4]  
BETHUEL F, INDIANA MATH J UNPUB
[5]   The black solitons of one-dimensional NLS equations [J].
Di Menza, L. ;
Gallo, C. .
NONLINEARITY, 2007, 20 (02) :461-496
[6]  
Faddeev L. D., 1987, Hamiltonian methods in the theory of solitons, V23
[7]  
FARINA A, 2008, CONT MATH AM MATH SO
[8]   The Cauchy problem for the Gross-Pitaevskii equation [J].
Gerard, P. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (05) :765-779
[9]  
GERARD P, 2008, CONT MATH A IN PRESS
[10]   STABILITY THEORY OF SOLITARY WAVES IN THE PRESENCE OF SYMMETRY .1. [J].
GRILLAKIS, M ;
SHATAH, J ;
STRAUSS, W .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 74 (01) :160-197