On constacyclic codes of length 4ps over Fpm + uFpm

被引:44
作者
Dinh, Hai Q. [1 ,2 ,3 ]
Dhompongsa, Sompong [4 ]
Sriboonchitta, Songsak [5 ]
机构
[1] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[3] Kent State Univ, Dept Math Sci, 4314 Mahoning Ave, Warren, OH 44483 USA
[4] Chiang Mai Univ, Fac Sci, Dept Math, Chiang Mai 52000, Thailand
[5] Chiang Mai Univ, Fac Econ, Chiang Mai 52000, Thailand
关键词
Constacyclic codes; Dual codes; Repeated-root codes; Codes over rings; Chain rings; SELF-DUAL CODES; CYCLIC CODES; NEGACYCLIC CODES; F-2+UF(2); Z(4); PREPARATA; KERDOCK; 2P(S); 2(S);
D O I
10.1016/j.disc.2016.11.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any odd prime p such that p(m) equivalent to 1 (mod 4), the structures of all lambda-constacyclic codes of length 4p(s) over the finite commutative chain ring F(p)m + uF(p)m (u(2) = 0) are established in terms of their generator polynomials. If the unit A is a square, each lambda-constacyclic code of length 4p(s) is expressed as a direct sum of an -alpha-constacyclic code and an alpha-constacyclic code of length 2p(s). In the main case that the unit lambda is not a square, it is shown that any nonzero polynomial of degree < 4 over F(p)m is invertible in the ambient ring (F(p)m+uF(p)m)[x]/(x(4ps)-lambda) When the unit lambda is of the form lambda = alpha + u beta for nonzero elements alpha, beta of F(p)m, it is obtained that the ambient ring (F(p)m+uF(p)m)[x]/x(4ps)-(alpha+u beta))is a chain ring with maximal ideal (x(4) - alpha(0)), and so the (alpha + u beta)-constacyclic codes are ((x(4) - alpha(0))(i)), for 0 <= i <= 2p(s). For the remaining case, that the unit lambda is not a square, and lambda = gamma for a nonzero element gamma of F(p)m, it is proven that the ambient ring F(p)m+uF(p)m)[x]/(x(4)ps-gamma) is a local ring with the unique maximal ideal (x(4) - gamma(0), u). Such lambda-constacyclic codes are then classified into 4 distinct types of ideals, and the detailed structures of ideals in each type are provided. Among other results, the number of codewords, and the dual of each lambda-constacyclic code are provided. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:832 / 849
页数:18
相关论文
共 35 条
[1]   On the generators of Z4 cyclic codes of length 2e [J].
Abualrub, T ;
Oehmke, R .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (09) :2126-2133
[2]   Type II codes over F2+uF2 and applications to Hermitian modular forms [J].
Bannai, E ;
Harada, M ;
Ibukiyama, T ;
Munemasa, A ;
Oura, M .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2003, 73 :13-42
[3]  
Berman S.D., 1967, Kibernetika, vol, V3, P17
[4]   Cyclic codes over Z4 of oddly even length [J].
Blackford, T .
DISCRETE APPLIED MATHEMATICS, 2003, 128 (01) :27-46
[5]   Cyclic codes and self-dual codes over F2+uF2 [J].
Bonnecaze, A ;
Udaya, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (04) :1250-1255
[6]   A LINEAR CONSTRUCTION FOR CERTAIN KERDOCK AND PREPARATA CODES [J].
CALDERBANK, AR ;
HAMMONS, AR ;
KUMAR, PV ;
SLOANE, NJA ;
SOLE, P .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 29 (02) :218-222
[7]  
Cary Huffman., 2003, Fundamentals of Error-Correcting Codes
[8]   ON REPEATED-ROOT CYCLIC CODES [J].
CASTAGNOLI, G ;
MASSEY, JL ;
SCHOELLER, PA ;
VONSEEMANN, N .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (02) :337-342
[9]   Constacyclic codes of length 2ps over Fpm + uFpm [J].
Chen, Bocong ;
Dinh, Hai Q. ;
Liu, Hongwei ;
Wang, Liqi .
FINITE FIELDS AND THEIR APPLICATIONS, 2016, 37 :108-130
[10]   ON REPEATED-ROOT CONSTACYCLIC CODES OF LENGTH 4p(s) [J].
Dinh, Hai Q. .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2013, 6 (02)