A guide to systematic review and meta-analysis of prediction model performance

被引:350
作者
Debray, Thomas P. A. [1 ,2 ]
Damen, Johanna A. A. G. [1 ,2 ]
Snell, Kym I. E. [3 ]
Ensor, Joie [3 ]
Hooft, Lotty [1 ,2 ]
Reitsma, Johannes B. [1 ,2 ]
Riley, Richard D. [3 ]
Moons, Karel G. M. [1 ,2 ]
机构
[1] Univ Med Ctr Utrecht, Cochrane Netherlands, POB 85500 Str 6-131, NL-3508 GA Utrecht, Netherlands
[2] Univ Med Ctr Utrecht, Julius Ctr Hlth Sci & Primary Care, POB 85500 Str 6-131, NL-3508 GA Utrecht, Netherlands
[3] Keele Univ, Res Inst Primary Care & Hlth Sci, Keele, Staffs, England
来源
BMJ-BRITISH MEDICAL JOURNAL | 2017年 / 356卷
基金
英国医学研究理事会;
关键词
INDIVIDUAL PARTICIPANT DATA; EXTERNAL VALIDATION; DIAGNOSIS TRIPOD; RISK MODELS; PROGNOSIS; TIME;
D O I
10.1136/bmj.i6460
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Validation of prediction models is highly recommended and increasingly common in the literature. A systematic review of validation studies is therefore helpful, with meta-analysis needed to summarise the predictive performance of the model being validated across different settings and populations. This article provides guidance for researchers systematically reviewing and meta-analysing the existing evidence on a specific prediction model, discusses good practice when quantitatively summarising the predictive performance of the model across studies, and provides recommendations for interpreting meta-analysis estimates of model performance. We present key steps of the meta-analysis and illustrate each step in an example review, by summarising the discrimination and calibration performance of the EuroSCORE for predicting operative mortality in patients undergoing coronary artery bypass grafting.
引用
收藏
页数:11
相关论文
共 47 条
  • [1] Altman DG, 2000, STAT MED, V19, P453, DOI 10.1002/(SICI)1097-0258(20000229)19:4<453::AID-SIM350>3.0.CO
  • [2] 2-5
  • [3] [Anonymous], COMBINING GROUPS
  • [4] [Anonymous], THESIS
  • [5] [Anonymous], STAT METHODS MED RES
  • [6] Design Characteristics Influence Performance of Clinical Prediction Rules in Validation: A Meta-Epidemiological Study
    Ban, Jong-Wook
    Ignacio Emparanza, Jose
    Urreta, Iratxe
    Burls, Amanda
    [J]. PLOS ONE, 2016, 11 (01):
  • [7] Individual patient- versus group-level data meta-regressions for the investigation of treatment effect modifiers: ecological bias rears its ugly head
    Berlin, JA
    Santanna, J
    Schmid, CH
    Szczech, LA
    Feldman, HI
    [J]. STATISTICS IN MEDICINE, 2002, 21 (03) : 371 - 387
  • [8] Review and comparison of ROC curve estimators for a time-dependent outcome with marker-dependent censoring
    Blanche, Paul
    Dartigues, Jean-Francois
    Jacqmin-Gadda, Helene
    [J]. BIOMETRICAL JOURNAL, 2013, 55 (05) : 687 - 704
  • [9] Reporting and Methods in Clinical Prediction Research: A Systematic Review
    Bouwmeester, Walter
    Zuithoff, Nicolaas P. A.
    Mallett, Susan
    Geerlings, Mirjam I.
    Vergouwe, Yvonne
    Steyerberg, Ewout W.
    Altman, Douglas G.
    Moons, Karel G. M.
    [J]. PLOS MEDICINE, 2012, 9 (05)
  • [10] Collins GS, 2015, J CLIN EPIDEMIOL, V68, P112, DOI [10.7326/M14-0697, 10.1038/bjc.2014.639, 10.1186/s12916-014-0241-z, 10.1136/bmj.g7594, 10.7326/M14-0698, 10.1016/j.jclinepi.2014.11.010, 10.1016/j.eururo.2014.11.025, 10.1002/bjs.9736]