Distribution preserving transformations of sequences on compact metric spaces

被引:0
作者
Winkler, R
机构
[1] Akad Wissensch, Inst Diskrete Math, A-1010 Vienna, Austria
[2] Vienna Tech Univ, Inst Algebra & Comp Math, A-1040 Vienna, Austria
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 1999年 / 10卷 / 03期
关键词
D O I
10.1016/S0019-3577(99)80036-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be ii compact metric space. For s is an element of X let mu(x) denote the point measure in x, i.e. mu(x)(B) = 1 if x is an element of B and mu(B) = 0 else for each Borel set B subset of or equal to X. For each sequence x = (x(n))(n is an element of N) consider the Borel measures mu(x,N) = 1/N Sigma(n=1)(N) mu(xn). Let the weak topology on the space of all Borel probability measures be induced by the metric d. Call two sequences x and x' equivalent (x similar to x') if lim(N-infinity) d(mu(x,N), mu(x',N)) = 0. Let furthermore Y be another compact metric space, Consider sequences f = (f(n))(n is an element of N) Of maps f(n) : X--> Y and the induced sequences f(x) = (f(n)(X-n))(n is an element of N). The object of this paper is to characterize all f such that x similar to x' always implies f(x) similar to f(x'). The topic is closely related to more elementary questions on Cesaro means.
引用
收藏
页码:459 / 471
页数:13
相关论文
共 18 条
[1]  
BLUMLINGER M, 1991, ANN I FOURIER, V41, P665
[3]  
DRMOTA M, 1997, SPRINGER LECT NOTES, V1651
[4]  
HELMBERG G, C 1 WESENTLICHE INDE
[5]  
Hlawka E., 1956, Abh. Math. Sem. Univ. Hamburg, V20, P223
[6]  
KUIPERS L, 1974, UNIFORM DISTRIBUTION
[7]   ALMOST CONSTANT SEQUENCES OF TRANSFORMATIONS [J].
LOSERT, V .
MONATSHEFTE FUR MATHEMATIK, 1978, 85 (02) :105-113
[8]  
LOSERT V, 1978, J REINE ANGEW MATH, V302, P51
[9]  
LOSERT V, 1979, SOC MATH FRANCE ASTE, V61, P133
[10]  
PORUBSKY S, 1988, ACTA ARITH, V49, P459