Mode transformations and entanglement relativity in bipartite Gaussian states

被引:10
作者
Ciancio, Emanuele [1 ]
Giorda, Paolo
Zanardi, Paolo
机构
[1] Inst Sci Interchange, Viale Settimio Severo 65, I-10133 Turin, Italy
[2] Politecn Torino, Dipartimento Fis, I-10129 Turin, Italy
关键词
D O I
10.1016/j.physleta.2006.01.059
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A proper choice of subsystems for a system of identical particles e.g., bosons, is provided by second-quantized modes, i.e., creation/annihilation operators. Here we investigate how the entanglement properties of bipartite Gaussian states of bosons change when modes are changed by means of unitary, number conserving, Bogoliubov transformations. This set of "virtual" bipartitions is then finite-dimensionally parametrized and one can quantitatively address relevant questions such as the determination of the minimal and maximal available entanglement. In particular, we show that in the class of bipartite Gaussian states there are states which remain separable for every possible modes redefinition, while do not exist states which remain entangled for every possible modes redefinition. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:274 / 280
页数:7
相关论文
共 25 条
[1]   Extremal entanglement and mixedness in continuous variable systems [J].
Adesso, G ;
Serafini, A ;
Illuminati, F .
PHYSICAL REVIEW A, 2004, 70 (02) :022318-1
[2]  
ARVIND V, QUANTPH9509002
[3]   Quantum information and computation [J].
Bennett, CH ;
DiVincenzo, DP .
NATURE, 2000, 404 (6775) :247-255
[4]  
BOTERO A, QUANTPH0404176
[5]   P-representable subset of all bipartite Gaussian separable states -: art. no. 034303 [J].
de Oliveira, MC .
PHYSICAL REVIEW A, 2004, 70 (03) :034303-1
[6]   Inseparability criterion for continuous variable systems [J].
Duan, LM ;
Giedke, G ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 2000, 84 (12) :2722-2725
[7]  
HORODECKI M, QUANTPH9605038
[8]   Geometry of entangled states [J].
Kus, M ;
Zyczkowski, K .
PHYSICAL REVIEW A, 2001, 63 (03) :1-13
[9]  
LEVAY P, QUANTPH0501145
[10]   Entanglement in a two-identical-particle system [J].
Li, YS ;
Zeng, B ;
Liu, XS ;
Long, GL .
PHYSICAL REVIEW A, 2001, 64 (05) :4