On pure Goldie dimensions

被引:4
作者
Berktas, Mustafa Kemal [1 ]
机构
[1] Usak Univ, Dept Math, Usak, Turkey
关键词
Accessible categories; Camps-Dicks theorem; dual pure Goldie dimension; pure Goldie dimension; SEMILOCAL ENDOMORPHISM RING; ADDITIVE CATEGORIES; ABELIAN CATEGORIES; UNIQUENESS; MODULES; OBJECTS;
D O I
10.1080/00927872.2016.1236387
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we examine the pure Goldie dimension and dual pure Goldie dimension in finitely accessible additive categories. In particular, we show that if A is an object in a finitely accessible additive category ? that has finite pure Goldie dimension n and finite dual pure Goldie dimension m, then End(?)(A) is semilocal and the dual Goldie dimension of End(?)(A) is less than or equal to n+m.
引用
收藏
页码:3334 / 3339
页数:6
相关论文
共 17 条
[11]   Local morphisms and modules with a semilocal endomorphism ring [J].
Facchini, Alberto ;
Herbera, Dolors .
ALGEBRAS AND REPRESENTATION THEORY, 2006, 9 (04) :403-422
[12]   Modules with semi-local endomorphism ring [J].
Herbera, D ;
Shamsuddin, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (12) :3593-3600
[13]   PURE-INJECTIVE ENVELOPES [J].
Herzog, Ivo .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2003, 2 (04) :397-402
[14]  
Kasch F., 1982, Modules and Rings
[15]   Uniqueness of uniform decompositions in abelian categories [J].
Krause, H .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2003, 183 (1-3) :125-128
[16]  
Stenstrom B., 1975, Rings of Quotients
[17]  
Xu J., 1996, LECT NOTES MATH, V1634