On pure Goldie dimensions

被引:4
作者
Berktas, Mustafa Kemal [1 ]
机构
[1] Usak Univ, Dept Math, Usak, Turkey
关键词
Accessible categories; Camps-Dicks theorem; dual pure Goldie dimension; pure Goldie dimension; SEMILOCAL ENDOMORPHISM RING; ADDITIVE CATEGORIES; ABELIAN CATEGORIES; UNIQUENESS; MODULES; OBJECTS;
D O I
10.1080/00927872.2016.1236387
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we examine the pure Goldie dimension and dual pure Goldie dimension in finitely accessible additive categories. In particular, we show that if A is an object in a finitely accessible additive category ? that has finite pure Goldie dimension n and finite dual pure Goldie dimension m, then End(?)(A) is semilocal and the dual Goldie dimension of End(?)(A) is less than or equal to n+m.
引用
收藏
页码:3334 / 3339
页数:6
相关论文
共 17 条
[1]  
Adamek J., 1994, LOCALLY PRESENTABLE
[2]   On Objects with a Semilocal Endomorphism Rings in Finitely Accessible Additive Categories [J].
Berktas, Mustafa Kemal .
ALGEBRAS AND REPRESENTATION THEORY, 2015, 18 (05) :1389-1393
[3]  
Berktas MK, 2012, JP J ALGEBR NUMBER T, V25, P113
[4]   A Uniqueness Theorem in a Finitely Accessible Additive Category [J].
Berktas, Mustafa Kemal .
ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (03) :1009-1012
[5]   ON SEMILOCAL RINGS [J].
CAMPS, R ;
DICKS, W .
ISRAEL JOURNAL OF MATHEMATICS, 1993, 81 (1-2) :203-211
[6]  
Clark J, 2006, FRONT MATH, P1
[7]   LOCALLY FINITELY PRESENTED ADDITIVE CATEGORIES [J].
CRAWLEYBOEVEY, W .
COMMUNICATIONS IN ALGEBRA, 1994, 22 (05) :1641-1674
[8]   Uniqueness of monogeny classes for uniform objects in abelian categories [J].
Diracca, L ;
Facchini, A .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2002, 172 (2-3) :183-191
[9]   Flat covers in the category of quasi-coherent sheaves over the projective line [J].
Enochs, E ;
Estrada, S ;
Rozas, JRG ;
Oyonarte, L .
COMMUNICATIONS IN ALGEBRA, 2004, 32 (04) :1497-1508
[10]  
Facchini A., 1998, PROGR MATH