Proof and generalization of Kaplan-Yorke's conjecture under the condition f′ (0) > 0 on periodic solution of differential delay equations

被引:49
作者
Li, JB [1 ]
He, XZ
机构
[1] Kunming Univ Sci & Technol, Inst Appl Math Yunnan Prov, Kunming 650093, Peoples R China
[2] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 1999年 / 42卷 / 09期
基金
中国国家自然科学基金;
关键词
differential-delay equations; Hamiltonian systems; periodic solutions; conjecture of Kaplan-Yorke;
D O I
10.1007/BF02880387
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the theory of existence of periodic solutions of Hamiltonian systems, it is shown that many periodic solutions of differential delay equations can be yielded from many families of periodic solutions of the coupled generalized Hamiltonian systems. Some sufficient conditions on the existence of periodic solutions of differential delay equations are obtained. As a corollary of our results, the conjecture of Kaplan-Yorke on the search for periodic solutions for certain special classes of scaler differential delay equations is shown to be true when f' (0) = omega > 0.
引用
收藏
页码:957 / 964
页数:8
相关论文
共 12 条
[1]  
Ambrosetti A, 1993, PRIMER NONLINEAR ANA
[2]  
Bartsch T, 1993, LECT NOTES MATH, V1560
[3]  
GE WG, 1994, CHINESE ANN MATH B, V15, P217
[4]  
GE WG, 1993, CHINESE ANN MATH A, V14, P480
[5]  
GE WG, 1994, ACTA MATH APPL SINIC, V17, P172
[6]  
Gopalsamy K., 1995, APPL ANAL, V59, P65
[7]   ORDINARY DIFFERENTIAL EQUATIONS WHICH YIELD PERIODIC-SOLUTIONS OF DIFFERENTIAL DELAY EQUATIONS [J].
KAPLAN, JL ;
YORKE, JA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 48 (02) :317-324
[8]  
Li J. B., 1994, The Theory and Applications of Generalized Hamilton System
[9]  
Meyer K. R., 1992, INTRO HAMILTONIAN DY
[10]  
NEMITSKII VV, 1960, QUALITATIVE THEORY D