Computing graph gonality is hard

被引:10
|
作者
Gijswijt, Dion [1 ]
Smit, Harry [2 ]
van der Wegen, Marieke [2 ,3 ]
机构
[1] Delft Univ Technol, Delft Inst Appl Math, Van Mourik Broekmanweg 6, NL-2628 XE Delft, Netherlands
[2] Univ Utrecht, Math Inst, POB 80-010, NL-3508 TA Utrecht, Netherlands
[3] Univ Utrecht, Dept Informat & Comp Sci, Princetonpl 5, NL-3584 CC Utrecht, Netherlands
关键词
Gonality; Computational complexity; Chip-firing; Graph theory; Tropical geometry; CHIP-FIRING GAMES; CURVES; DIVISORS;
D O I
10.1016/j.dam.2020.08.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There are several notions of gonality for graphs. The divisorial gonality dgon(G) of a graph G is the smallest degree of a divisor of positive rank in the sense of Baker-Norine. The stable gonality sgon(G) of a graph G is the minimum degree of a finite harmonic morphism from a refinement of G to a tree, as defined by Cornelissen, Kato and Kool. We show that computing dgon(G) and sgon(G) are NP-hard by a reduction from the maximum independent set problem and the vertex cover problem, respectively. Both constructions show that computing gonality is moreover APX-hard. (C) 2020 The Author(s). Published by Elsevier B.V.
引用
收藏
页码:134 / 149
页数:16
相关论文
共 50 条
  • [1] On the semigroup of graph gonality sequences
    Fessler, Austin
    Jensen, David
    Kelsey, Elizabeth
    Owen, Noah
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2024, 88 : 343 - 361
  • [2] A new lower bound on graph gonality
    Harp, Michael
    Jackson, Elijah
    Jensen, David
    Speeter, Noah
    DISCRETE APPLIED MATHEMATICS, 2022, 309 : 172 - 179
  • [3] On metric graphs with prescribed gonality
    Cools, Filip
    Draisma, Jan
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 156 : 1 - 21
  • [4] Stable Divisorial Gonality is in NP
    Bodlaender, Hans L.
    van der Wegen, Marieke
    van der Zanden, Tom C.
    THEORY OF COMPUTING SYSTEMS, 2021, 65 (02) : 428 - 440
  • [5] Stable gonality is computable
    Koerkamp, Ragnar Groot
    van der Wegen, Marieke
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2019, 21 (01)
  • [6] The extremal secant conjecture for curves of arbitrary gonality
    Kemeny, Michael
    COMPOSITIO MATHEMATICA, 2017, 153 (02) : 347 - 357
  • [7] GONALITY SEQUENCES OF GRAPHS
    Aidun, Ivan
    Dean, Frances
    Morrison, Ralph
    Yu, Teresa
    Yuan, Julie
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (02) : 814 - 839
  • [8] Stable Divisorial Gonality is in NP
    Hans L. Bodlaender
    Marieke van der Wegen
    Tom C. van der Zanden
    Theory of Computing Systems, 2021, 65 : 428 - 440
  • [9] On the gonality and the slope of a fibered surface
    Lu, Xin
    Zuo, Kang
    ADVANCES IN MATHEMATICS, 2018, 324 : 336 - 354
  • [10] Burning a graph is hard
    Bessy, Stephane
    Bonato, Anthony
    Janssen, Jeannette
    Rautenbach, Dieter
    Roshanbin, Elham
    DISCRETE APPLIED MATHEMATICS, 2017, 232 : 73 - 87