SARS-COV-2 Mpro conformational changes induced by covalently bound ligands

被引:0
|
作者
Ferreira, Glaucio Monteiro [1 ,2 ]
Kronenberger, Thales [2 ,3 ]
Tonduru, Arun Kumar [3 ]
Hirata, Rosario Dominguez Crespo [1 ]
Hirata, Mario Hiroyuki [1 ]
Poso, Antti [2 ,3 ]
机构
[1] Univ Sao Paulo, Sch Pharmaceut Sci, Dept Clin & Toxicol Anal, Sao Paulo, Brazil
[2] Univ Hosp Tubingen, Dept Oncol & Pneumonol, Internal Med 8, Tubingen, Germany
[3] Univ Eastern Finland, Fac Hlth Sci, Sch Pharm, Kuopio, Finland
基金
巴西圣保罗研究基金会;
关键词
COVID-19; main protease; M-pro; Molecular dynamics simulation; PROTEIN; MOLECULES;
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
SARS-CoV-2's main protease (M-pro) interaction with ligands has been explored with a myriad of crystal structures, most of the monomers. Nonetheless, Mpro is known to be active as a dimer but the relevance of the dimerization in the ligand-induced conformational changes has not been fully elucidated. We systematically simulated different Mpro-ligand complexes aiming to study their conformational changes and interactions, through molecular dynamics (MD). We focused on covalently bound ligands (N1 and N3, similar to 9 ls per system both monomers and dimers) and compared these trajectories against the apostructure. Our results suggest that the monomeric simulations led to an unrealistically flexible active site. In contrast, the Mpro dimer displayed a stable oxyanion-loop conformation along the trajectory. Also, ligand interactions with residues His41, Gly143, His163, Glu166 and Gln189 are postulated to impact the ligands' inhibitory activity significantly. In dimeric simulations, especially Gly143 and His163 have increased interaction frequencies. In conclusion, long-timescale MD is a more suitable tool for exploring in silico the activity of bioactive compounds that potentially inhibit the dimeric form of SARS-CoV-2 Mpro.
引用
收藏
页码:12347 / 12357
页数:11
相关论文
共 50 条
  • [11] Advances in the Search for SARS-CoV-2 Mpro and PLpro Inhibitors
    Diogo, Marcel Arruda
    Cabral, Augusto Gomes Teixeira
    de Oliveira, Renata Barbosa
    PATHOGENS, 2024, 13 (10):
  • [12] Small Peptides Inhibition of SARS-CoV-2 Mpro via Computational Approaches
    Nguyen, Trung Hai
    Le, Thi Thuy Huong
    Pham, Minh Quan
    Phung, Huong Thi Thu
    Ngo, Son Tung
    CURRENT PROTEOMICS, 2025,
  • [13] SARS-CoV-2 Mpro: A Potential Target for Peptidomimetics and Small-Molecule Inhibitors
    Citarella, Andrea
    Scala, Angela
    Piperno, Anna
    Micale, Nicola
    BIOMOLECULES, 2021, 11 (04)
  • [14] Conventional Understanding of SARS-CoV-2 Mpro and Common Strategies for Developing Its Inhibitors
    Zhou, Kun
    Chen, Daquan
    CHEMBIOCHEM, 2023,
  • [15] Fragment-based design of SARS-CoV-2 Mpro inhibitors
    Teli, Divya M.
    Patel, Bansari
    Chhabria, Mahesh T.
    STRUCTURAL CHEMISTRY, 2022, 33 (06) : 2155 - 2168
  • [16] Fragment-based design of SARS-CoV-2 Mpro inhibitors
    Divya M. Teli
    Bansari Patel
    Mahesh T. Chhabria
    Structural Chemistry, 2022, 33 : 2155 - 2168
  • [17] Potential inhibitors for SARS-CoV-2 Mpro from marine compounds
    Tam, Nguyen Minh
    Pham, Minh Quan
    Nguyen, Huy Truong
    Hong, Nam Dao
    Hien, Nguyen Khoa
    Quang, Duong Tuan
    Thu Phung, Huong Thi
    Ngo, Son Tung
    RSC ADVANCES, 2021, 11 (36) : 22206 - 22213
  • [18] Exploration of natural compounds with anti-SARS-CoV-2 activity via inhibition of SARS-CoV-2 Mpro
    Bharadwaj, Shiv
    Dubey, Amit
    Yadava, Umesh
    Mishra, Sarad Kumar
    Kang, Sang Gu
    Dwivedi, Vivek Dhar
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (02) : 1361 - 1377
  • [19] Taming the storm: potential anti-inflammatory compounds targeting SARS-CoV-2 MPro
    Anton, Debora Bublitz
    de Lima, Jeferson Camargo
    Dahmer, Bruno Rampanelli
    Camini, Ana Micaela
    Goettert, Marcia Ines
    Timmers, Luis Fernando Saraiva Macedo
    INFLAMMOPHARMACOLOGY, 2024, 32 (05) : 3007 - 3035
  • [20] Potential SARS-CoV-2 protease Mpro inhibitors: repurposing FDA-approved drugs
    Kouznetsova, Valentina L.
    Huang, David Z.
    Tsigelny, Igor F.
    PHYSICAL BIOLOGY, 2021, 18 (02)