AN OPTIMAL POINCARE-WIRTINGER INEQUALITY IN GAUSS SPACE

被引:12
作者
Brandolini, Barbara [1 ]
Chiacchio, Francesco [1 ]
Henrot, Antoine [2 ]
Trombetti, Cristina [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
[2] Univ Lorraine, UMR CNRS 7502, Inst Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
关键词
Neumann eigenvalue; Hermite operator; sharp bounds; ISOPERIMETRIC-INEQUALITIES; NEUMANN EIGENVALUE; 1ST EIGENFUNCTION; DOMAINS; PROOF;
D O I
10.4310/MRL.2013.v20.n3.a3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega be a smooth, convex, unbounded domain of R-N. Denote by mu(1)(Omega) the first nontrivial Neumann eigenvalue of the Hermite operator in Omega; we prove that mu(1)(Omega) >= 1. The result is sharp since equality sign is achieved when Omega is a N-dimensional strip. Our estimate can be equivalently viewed as an optimal Poincare-Wirtinger inequality for functions belonging to the weighted Sobolev space H-1(Omega, d(gamma N)), where gamma(N) is the N-dimensional Gaussian measure.
引用
收藏
页码:449 / 457
页数:9
相关论文
共 40 条
[1]   On the properties of some nonlinear eigenvalues [J].
Alvino, A ;
Ferone, V ;
Trombetti, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (02) :437-451
[2]   Eigenvalue Comparison on Bakry-Emery Manifolds [J].
Andrews, Ben ;
Ni, Lei .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (11) :2081-2092
[3]   PROOF OF THE FUNDAMENTAL GAP CONJECTURE [J].
Andrews, Ben ;
Clutterbuck, Julie .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (03) :899-916
[4]  
[Anonymous], 1953, Methods of mathematical physics
[5]  
[Anonymous], PROC ROY SOC EDINBUR
[6]  
[Anonymous], 1998, GAUSSIAN MEASURES
[7]  
[Anonymous], 1960, Arch. Rational Mech. Anal., DOI DOI 10.1007/BF00252910
[8]   On extending the inequalities of Payne, Polya, and Weinberger using spherical harmonics [J].
Ashbaugh, Mark S. ;
Hermi, Lotfi .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2008, 38 (04) :1037-1072
[9]   A SHARP BOUND FOR THE RATIO OF THE 1ST 2 EIGENVALUES OF DIRICHLET LAPLACIANS AND EXTENSIONS [J].
ASHBAUGH, MS ;
BENGURIA, RD .
ANNALS OF MATHEMATICS, 1992, 135 (03) :601-628
[10]   Sharp upper bound to the first nonzero Neumann eigenvalue for bounded domains in spaces of constant curvature [J].
Ashbaugh, MS ;
Benguria, RD .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1995, 52 :402-416