Prediction of silicon PV module temperature for hot spots and worst case partial shading situations using spatially resolved lock-in thermography

被引:65
作者
Geisemeyer, I. [1 ]
Fertig, F. [1 ]
Warta, W. [1 ]
Rein, S. [1 ]
Schubert, M. C. [1 ]
机构
[1] Fraunhofer Inst Solar Energy Syst ISE, D-79110 Freiburg, Germany
关键词
Module; Shading; Diode breakdown; Hot spots; Thermal modeling; CURRENT-VOLTAGE CHARACTERISTICS; SOLAR-CELLS; N-JUNCTIONS; RESISTANCE; BREAKDOWN; DEPENDENCE; SIMULATION; SYSTEMS; LOSSES;
D O I
10.1016/j.solmat.2013.09.016
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper we propose a method to predict hot spot temperatures in crystalline silicon photovoltaic modules operating under critical shading conditions prior to module fabrication. We developed a unique tool to evaluate the damage risk potential for an individual solar cell. We show that shading conditions leading to the most critical hot spot temperature do not necessarily coincide with the shading conditions for the maximum total power dissipation in the shaded cell. In fact, for an adequate prediction of temperature fields and the worst case shading scenario, spatially resolved information of the power dissipation on cell level and a thermal simulation of the module system are indispensable. Our approach is divided into three steps, starting with an electric network simulation of cell operating points for different shading scenarios. For these operating points we perform spatially resolved lock-in thermography measurements of the power dissipation on cell level. On that basis we compute three-dimensional temperature fields inside the module with a finite-element analysis for different realistic module operating conditions. The model is validated with experimental data on a module of industrial cells. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:259 / 269
页数:11
相关论文
共 40 条
  • [1] A multimechanism model for photon generation by silicon junctions in avalanche breakdown
    Akil, N
    Kerns, SE
    Kerns, DV
    Hoffmann, A
    Charles, JP
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 1999, 46 (05) : 1022 - 1028
  • [2] [Anonymous], 2010, Lock-in thermography : basics and use for evaluating electronic devices and materials. 2nd ed, Springer series in advanced microelectronics
  • [3] [Anonymous], 1996, SIMULATION ABSCHATTU
  • [4] *ANSI UL, 2004, 1703 ANSIUL
  • [5] A thermal model for photovoltaic panels under varying atmospheric conditions
    Armstrong, S.
    Hurley, W. G.
    [J]. APPLIED THERMAL ENGINEERING, 2010, 30 (11-12) : 1488 - 1495
  • [6] Avalanche breakdown in multicrystalline solar cells due to preferred phosphorous diffusion at extended defects
    Bauer, Jan
    Lausch, Dominik
    Blumtritt, Horst
    Zakharov, Nikolai
    Breitenstein, Otwin
    [J]. Bauer, J. (jbauer@mpi-halle.mpg.de), 1600, John Wiley and Sons Ltd (21): : 1444 - 1453
  • [7] Hot spots in multicrystalline silicon solar cells: avalanche breakdown due to etch pits
    Bauer, J.
    Wagner, J. -M.
    Lotnyk, A.
    Blumtritt, H.
    Lim, B.
    Schmidt, J.
    Breitenstein, O.
    [J]. PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2009, 3 (2-3): : 40 - 42
  • [8] MICROPLASMA BREAKDOWN AND HOT-SPOTS IN SILICON SOLAR-CELLS
    BISHOP, JW
    [J]. SOLAR CELLS, 1989, 26 (04): : 335 - 349
  • [9] COMPUTER-SIMULATION OF THE EFFECTS OF ELECTRICAL MISMATCHES IN PHOTOVOLTAIC CELL INTERCONNECTION CIRCUITS
    BISHOP, JW
    [J]. SOLAR CELLS, 1988, 25 (01): : 73 - 89
  • [10] Luminescence emission from forward- and reverse-biased multicrystalline silicon solar cells
    Bothe, K.
    Ramspeck, K.
    Hinken, D.
    Schinke, C.
    Schmidt, J.
    Herlufsen, S.
    Brendel, R.
    Bauer, J.
    Wagner, J. -M.
    Zakharov, N.
    Breitenstein, O.
    [J]. JOURNAL OF APPLIED PHYSICS, 2009, 106 (10)