FORCASTING OF RENEWABLE ENERGY LOAD WITH RADIAL BASIS FUNCTION (RBF) NEURAL NETWORKS

被引:0
|
作者
Dragomir, Otilia Elena [1 ]
Dragomir, Florin [1 ]
Minca, Eugenia [1 ]
机构
[1] Valahia Univ Targoviste, Fac Elect Engn, Automat Comp Sci & Elect Engn Dept, 18 Unirii Ave, Targoviste, Romania
来源
ICINCO 2011: PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL 2 | 2011年
关键词
RBF; Neural networks; Load renewable energy; Forecasting;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper focus on radial- basis function (RBF) neural networks, the most popular and widely-used paradigms in many applications, including renewable energy forecasting. It provides an analysis of short term load forecasting STLF performances of RBF neural networks. Precisely, the goal is to forecast the DPcg (difference between the electricity produced from renewable energy sources and consumed), for short- term horizon. The forecasting accuracy and precision, in capturing nonlinear interdependencies between the load and solar radiation of these neural networks are illustrated and discussed using a data based obtain from an experimental photovoltaic amphitheatre of minimum dimension 0.4kV/10kW.
引用
收藏
页码:409 / 412
页数:4
相关论文
共 50 条
  • [1] Radial Basis Function (RBF) Neural Network for Load Forecasting during Holiday
    Syafaruddin
    Manjang, Salama
    Latief, Satriani
    2016 3RD CONFERENCE ON POWER ENGINEERING AND RENEWABLE ENERGY (ICPERE), 2016, : 235 - 239
  • [2] Intrusion detection system based on radial basis function (RBF) neural networks
    Qin Cuimang
    Yang Qiuxiang
    ISTM/2007: 7TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-7, CONFERENCE PROCEEDINGS, 2007, : 2639 - 2642
  • [3] On simultaneous approximations by radial basis function neural networks
    Li, X
    APPLIED MATHEMATICS AND COMPUTATION, 1998, 95 (01) : 75 - 89
  • [4] Generalised Gaussian radial basis function neural networks
    Fernandez-Navarro, F.
    Hervas-Martinez, C.
    Gutierrez, P. A.
    SOFT COMPUTING, 2013, 17 (03) : 519 - 533
  • [5] Generalised Gaussian radial basis function neural networks
    F. Fernández-Navarro
    C. Hervás-Martínez
    P. A. Gutierrez
    Soft Computing, 2013, 17 : 519 - 533
  • [6] Predicting marital dissolutions using Radial Basis Function Neural Networks
    Guillen, A.
    Tovar, C.
    Herrera, L. J.
    Pomares, H.
    Gonzalez, J.
    Guillen, J. F.
    Rojas, I.
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [7] Comparison between Traditional Neural Networks and Radial Basis Function Networks
    Xie, Tiantian
    Yu, Hao
    Wilamowski, Bogdan
    2011 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2011,
  • [8] Output value-based initialization for radial basis function neural networks
    Guillen, Alberto
    Rojas, Ignacio
    Gonzalez, Jesus
    Pomares, Hector
    Herrera, L. J.
    Valenzuela, O.
    Rojas, F.
    NEURAL PROCESSING LETTERS, 2007, 25 (03) : 209 - 225
  • [9] Output value-based initialization for radial basis function neural networks
    Alberto Guillén
    Ignacio Rojas
    Jesús González
    Héctor Pomares
    L. J. Herrera
    O. Valenzuela
    F. Rojas
    Neural Processing Letters, 2007, 25 : 209 - 225
  • [10] Complexity reduction in radial basis function (RBF) networks by using radial B-spline functions
    Saranli, A
    Baykal, B
    NEUROCOMPUTING, 1998, 18 (1-3) : 183 - 194