Explicit bounds for the solutions of second order linear differential equations

被引:6
作者
Almenar, Pedro [2 ]
Jodar, Lucas [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Multidisciplinar, Valencia 46022, Spain
[2] Vodafone Spain SA, PE Castellana Norte, Madrid 28050, Spain
关键词
Second order linear differential equation; Bounds; Oscillating solutions; STURM-LIOUVILLE PROBLEMS; NUMERICAL-SOLUTIONS; APPROXIMATIONS; EIGENVALUES;
D O I
10.1016/j.camwa.2008.09.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the construction of explicit bounds for solutions of second order linear differential equations of the type [p(x)y'(x)]' + q(x)y(x) = 0, p(x), q(x) > 0, x > x(0). The construction is based on the study of the evolution of two complementary functionals involving y(x) in the sequence of zeroes of y(x) and y'(x). Based on that, both a theoretical bound and an algorithm to explicitly calculate that bound are presented. An illustrative example shows that the bounds proposed here improve previous results. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:789 / 798
页数:10
相关论文
共 29 条
[1]   Mixed problems for separated variable coefficient wave equations:: analytic-numerical solutions with a priori error bounds [J].
Almenar, P ;
Jódar, L .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 134 (1-2) :301-323
[2]   Constructive approximations of mixed variable coefficient diffusion problems [J].
Almenar, P ;
Goberna, D ;
Jódar, L .
MATHEMATICAL AND COMPUTER MODELLING, 1999, 29 (06) :33-44
[3]  
[Anonymous], 1975, AM MATH SOC COLLOQ P
[4]  
Apostol T. M., MATH ANAL
[5]  
ARMELLINI G, 1935, REND ACAD LINCEI, V21, P113
[6]   THE BOUNDEDNESS OF SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS [J].
BELLMAN, R .
DUKE MATHEMATICAL JOURNAL, 1947, 14 (01) :83-97
[7]  
BUTLEWSKI Z, 1936, MATH CLUJ, V12, P36
[8]  
BUTLEWSKI Z, 1940, ANN SC NORM SUPE DSS, V2, P187
[9]  
CHANTURIA T, 1975, DIFF URAVN, V11, P1232
[10]  
Dosla Z., 1998, Funkc. Ekvacioj, V41, P189