Theory of thermal expansion in 2D crystals

被引:23
作者
Michel, K. H. [1 ]
Costamagna, S. [1 ,2 ]
Peeters, F. M. [1 ]
机构
[1] Univ Antwerp, Dept Phys, BE-2020 Antwerp, Belgium
[2] Inst Fis Rosario, RA-2000 Rosario, Santa Fe, Argentina
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2015年 / 252卷 / 11期
关键词
anharmonic effects; graphene; thermal expansion; two-dimensional crystals; GRAPHENE; SCATTERING; GRAPHITE; NEUTRONS;
D O I
10.1002/pssb.201552286
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The thermal expansion alpha(T) in layered crystals is of fundamental and technological interest. As suggested by I. M. Lifshitz in 1952, in thin solid films (crystalline membranes) a negative contribution to alpha(T) is due to anharmonic couplings between in-plane stretching modes and out-of-plane bending (flexural modes). Genuine in-plane anharmonicities give a positive contribution to alpha(T). The competition between these two effects can lead to a change of sign (crossover) from a negative value of alpha(T) in a temperature (T) range T <= T-alpha to a positive value of alpha(T) for T > T-alpha in layered crystals. Here, we present an analytical lattice dynamical theory of these phenomena for a two-dimensional (2D) hexagonal crystal. We start from a Hamiltonian that comprises anharmonic terms of third and fourth order in the lattice displacements. The in-plane and out-of-plane contributions to the thermal expansion are studied as functions of T for crystals of different sizes. Besides, renormalization of the flexural mode frequencies plays a crucial role in determining the crossover temperature T-alpha. Numerical examples are given for graphene where the anharmonic couplings are determined from experiments. The theory is applicable to other layer crystals wherever the anharmonic couplings are known. (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:2433 / 2437
页数:5
相关论文
共 27 条
  • [1] Thermodynamics of quantum crystalline membranes
    Amorim, B.
    Roldan, R.
    Cappelluti, E.
    Fasolino, A.
    Guinea, F.
    Katsnelson, M. I.
    [J]. PHYSICAL REVIEW B, 2014, 89 (22)
  • [2] [Anonymous], LECT IWEPNM 2015 KIR
  • [3] [Anonymous], ELASTIZITATSTHEORIE
  • [4] [Anonymous], PHYS REV LETT
  • [5] [Anonymous], THEORY ANHARMONIC EF
  • [6] [Anonymous], DYNAMICAL PROPERTIES
  • [7] [Anonymous], 1974, DYNAMICAL PROPERTIES
  • [8] Bao WZ, 2009, NAT NANOTECHNOL, V4, P562, DOI [10.1038/nnano.2009.191, 10.1038/NNANO.2009.191]
  • [9] Anharmonic effects on thermodynamic properties of a graphene monolayer
    da Silva, A. L. C.
    Candido, Ladir
    Teixeira Rabelo, J. N.
    Hai, G. -Q.
    Peeters, F. M.
    [J]. EPL, 2014, 107 (05)
  • [10] Bending modes, anharmonic effects, and thermal expansion coefficient in single-layer and multilayer graphene
    de Andres, P. L.
    Guinea, F.
    Katsnelson, M. I.
    [J]. PHYSICAL REVIEW B, 2012, 86 (14)