Rational Design of a Hierarchical Tin Dendrite Electrode for Efficient Electrochemical Reduction of CO2

被引:248
作者
Won, Da Hye [1 ]
Choi, Chang Hyuck [1 ]
Chung, Jaehoon [1 ]
Chung, Min Wook [2 ]
Kim, Eun-Hee [3 ]
Woo, Seong Ihl [1 ,2 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, Taejon 305701, South Korea
[2] Korea Adv Inst Sci & Technol, Grad Sch EEWS BK21PLUS, Taejon 305701, South Korea
[3] Korea Basic Sci Inst, Prot Struct Res Team, Cheongjoo 363663, South Korea
基金
新加坡国家研究基金会;
关键词
carbon dioxide; electrocatalysis; formate; oxygen content; tin; CARBON-DIOXIDE; ELECTROCATALYTIC REDUCTION; AU NANOPARTICLES; METAL-ELECTRODES; BICARBONATE REDUCTION; ENHANCED ACTIVITY; CU ELECTRODES; SN ELECTRODE; FORMIC-ACID; SOLAR FUELS;
D O I
10.1002/cssc.201500694
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Catalysis is a key technology for the synthesis of renewable fuels through electrochemical reduction of CO2. However, successful CO2 reduction still suffers from the lack of affordable catalyst design and understanding the factors governing catalysis. Herein, we demonstrate that the CO2 conversion selectivity on Sn (or SnOx/Sn) electrodes is correlated to the native oxygen content at the subsurface. Electrochemical analyses show that the reduced Sn electrode with abundant oxygen species effectively stabilizes a CO2 center dot- intermediate rather thanthe clean Sn surface, and consequently results in enhanced formate production in the CO2 reduction. Based on this design strategy, a hierarchical Sn dendrite electrode with high oxygen content, consisting of a multi-branched conifer-like structure with an enlarged surface area, was synthesized. The electrode exhibits a superior formate production rate (228.6 mu mol h(-1) cm(-2)) at -1.36 V-RHE without any considerable catalytic degradation over 18 h of operation.
引用
收藏
页码:3092 / 3098
页数:7
相关论文
共 48 条
[1]   The Electrochemical Reduction of Carbon Dioxide to Formate/Formic Acid: Engineering and Economic Feasibility (vol 5, pg 1301, 2011) [J].
Agarwal, A. S. ;
Zhai, Y. ;
Hill, D. ;
Sridhar, N. .
CHEMSUSCHEM, 2011, 4 (12) :CP26-CP26
[2]  
[Anonymous], 2005, CRC Handbook of Chemistry and Physics
[3]   ELECTROCHEMICAL REDUCTION OF CARBON-DIOXIDE ON VARIOUS METAL-ELECTRODES IN LOW-TEMPERATURE AQUEOUS KHCO3 MEDIA [J].
AZUMA, M ;
HASHIMOTO, K ;
HIRAMOTO, M ;
WATANABE, M ;
SAKATA, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (06) :1772-1778
[4]   Mechanistic Insights into the Reduction of CO2 on Tin Electrodes using in Situ ATR-IR Spectroscopy [J].
Baruch, Maor F. ;
Pander, James E., III ;
White, James L. ;
Bocarsly, Andrew B. .
ACS CATALYSIS, 2015, 5 (05) :3148-3156
[5]   Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries [J].
Centi, Gabriele ;
Quadrelli, Elsje Alessandra ;
Perathoner, Siglinda .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (06) :1711-1731
[6]   Towards Solar Fuels from Water and CO2 [J].
Centi, Gabriele ;
Perathoner, Siglinda .
CHEMSUSCHEM, 2010, 3 (02) :195-208
[7]  
Chastain J., 1992, PerkinElmer Corp., V40, P221
[8]   Aqueous CO2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles [J].
Chen, Yihong ;
Li, Christina W. ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (49) :19969-19972
[9]   Tin Oxide Dependence of the CO2 Reduction Efficiency on Tin Electrodes and Enhanced Activity for Tin/Tin Oxide Thin-Film Catalysts [J].
Chen, Yihong ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (04) :1986-1989
[10]   Cu(II)/Cu(0) electrocatalyzed CO2 and H2O splitting [J].
Chen, Zuofeng ;
Kang, Peng ;
Zhang, Ming-Tian ;
Stoner, Brian R. ;
Meyer, Thomas J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (03) :813-817