The tumor suppressor protein. p53, is often referred to as the guardian of the genome. when p53 function is impaired, its ability to preserve genomic integrity is compromised. This may result in an increase in mutation on both a molecular and chromosomal level and contribute to the progression to a malignant phenotype. In order to study the effect of p53 function on the acquisition of mutation, in vitro and in vivo models have been developed in which both the frequency and mechanism of mutation can be analyzed. In human lymphoblastoid cells in which p53 function was impaired, both the spontaneous and induced mutant frequency increased at the autosomal thymidine kinase (TK) locus. The mutant frequency increased to a greater extent in cell lines in which p53 harbored a point mutation than in those lines in which a "null" mutation had been introduced by molecular targeting or by viral degradation indicating a possible "gain-of-function" associated with the mutant protein. Further, molecular analysis revealed that the loss of p53 function was associated with a greater tendency towards loss-of-heterozygosity (LOH) within the TK gene that was due to non-homologous recombination than that found in wild-type cells. Most data obtained from the in vivo models uses the LacI reporter gene that does not efficiently detect mutation that results in LOH. However, studies that have examined the effect of p53 status on mutation in the adenine phosphoribosyl transferase (APRT) gene in transgenic mice also suggest that loss of p53 function results in an increase in mutation resulting from non-homologous recombination. The results of these studies provide clear and convincing evidence that p53 plays a role in modulating the mutant frequency and the mechanism of mutation. In addition, the types of mutation that occur within the p53 gene are also of importance in determining the mutant frequency and the pathways leading to mutation, Published by Elsevier Science B.V.