A Routing Method Designed for a Quantum Key Distribution Network

被引:0
作者
Tanizawa, Yoshimichi [1 ]
Takahashi, Ririka [1 ]
Dixon, Alexander R. [1 ]
机构
[1] Toshiba Co Ltd, Corp Res & Dev Ctr, Kawasaki, Kanagawa, Japan
来源
2016 EIGHTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN) | 2016年
关键词
QKD network; quantum key distribution; routing protocol; FIELD-TEST; AREA;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Quantum Key Distribution (QKD) is a technique for sharing encryption keys between two adjacent nodes in an unconditionally secure manner based on quantum theory. From the viewpoint of network system research, QKD is considered to be a building block for providing secure link communication in network systems. Although the communication distance is subject to a limitation attributable to the QKD fundamentals, recent research and some QKD field trials of "key relaying" over a "QKD network" are overcoming this limitation. It also enables each node on the QKD network to exchange encryption keys with arbitrary nodes on the QKD network. However, the previous research didn't address a routing method on the QKD network in detail. This paper focuses on the routing issues on the QKD network, clarifies the requirements of the routing protocol, and proposes a routing solution designed for the key relaying on the QKD network. The proposed routing solution consists of 4 components: (1) a node interface architecture addressing both encrypted and unencrypted traffics, (2) a path selection algorithm based on the number of keys, (3) an IP address assignment scheme connecting unencrypted interfaces and encrypted interfaces, and (4) a routing protocol deployment method consuming no extra keys. The proposed routing solution allows the QKD network to select a suitable key relaying path according to the QKD system condition and to reduce the extra key consumption, which optimizes the key utilization on the QKD network. The proposed routing solution was implemented with a network emulating QKD technology and evaluated. The evaluation result shows that the proposed routing solution could select a path that stores enough keys, which is suitable for a QKD network. Additional impact analysis reveals that the proposed routing solution could save up to 52% of key consumption depending on the QKD key sharing speed and the routing protocol configuration.
引用
收藏
页码:208 / 214
页数:7
相关论文
共 15 条
[1]  
Bennett C.H., 1984, PROC IEEE INT C COMP, P175, DOI DOI 10.1016/J.TCS.2014.05.025
[2]   Architecture and protocols of the future European quantum key distribution network [J].
Dianati, Mehrdad ;
Alleaume, Romain ;
Gagnaire, Maurice ;
Shen, Xuemin .
SECURITY AND COMMUNICATION NETWORKS, 2008, 1 (01) :57-74
[3]  
Dixon A. R., 2015, OPTICS EXPRESS, V23
[4]  
Elliott C., 2005, 0503058 ARXIV
[5]   Field test of classical symmetric encryption with continuous variables quantum key distribution [J].
Jouguet, Paul ;
Kunz-Jacques, Sebastien ;
Debuisschert, Thierry ;
Fossier, Simon ;
Diamanti, Eleni ;
Alleaume, Romain ;
Tualle-Brouri, Rosa ;
Grangier, Philippe ;
Leverrier, Anthony ;
Pache, Philippe ;
Painchault, Philippe .
OPTICS EXPRESS, 2012, 20 (13) :14030-14041
[6]  
MOY J, 1998, RFC2328 IETF
[7]   The SECOQC quantum key distribution network in Vienna [J].
Peev, M. ;
Pacher, C. ;
Alleaume, R. ;
Barreiro, C. ;
Bouda, J. ;
Boxleitner, W. ;
Debuisschert, T. ;
Diamanti, E. ;
Dianati, M. ;
Dynes, J. F. ;
Fasel, S. ;
Fossier, S. ;
Fuerst, M. ;
Gautier, J-D ;
Gay, O. ;
Gisin, N. ;
Grangier, P. ;
Happe, A. ;
Hasani, Y. ;
Hentschel, M. ;
Huebel, H. ;
Humer, G. ;
Laenger, T. ;
Legre, M. ;
Lieger, R. ;
Lodewyck, J. ;
Loruenser, T. ;
Luetkenhaus, N. ;
Marhold, A. ;
Matyus, T. ;
Maurhart, O. ;
Monat, L. ;
Nauerth, S. ;
Page, J-B ;
Poppe, A. ;
Querasser, E. ;
Ribordy, G. ;
Robyr, S. ;
Salvail, L. ;
Sharpe, A. W. ;
Shields, A. J. ;
Stucki, D. ;
Suda, M. ;
Tamas, C. ;
Themel, T. ;
Thew, R. T. ;
Thoma, Y. ;
Treiber, A. ;
Trinkler, P. ;
Tualle-Brouri, R. .
NEW JOURNAL OF PHYSICS, 2009, 11
[8]   Field test of quantum key distribution in the Tokyo QKD Network [J].
Sasaki, M. ;
Fujiwara, M. ;
Ishizuka, H. ;
Klaus, W. ;
Wakui, K. ;
Takeoka, M. ;
Miki, S. ;
Yamashita, T. ;
Wang, Z. ;
Tanaka, A. ;
Yoshino, K. ;
Nambu, Y. ;
Takahashi, S. ;
Tajima, A. ;
Tomita, A. ;
Domeki, T. ;
Hasegawa, T. ;
Sakai, Y. ;
Kobayashi, H. ;
Asai, T. ;
Shimizu, K. ;
Tokura, T. ;
Tsurumaru, T. ;
Matsui, M. ;
Honjo, T. ;
Tamaki, K. ;
Takesue, H. ;
Tokura, Y. ;
Dynes, J. F. ;
Dixon, A. R. ;
Sharpe, A. W. ;
Yuan, Z. L. ;
Shields, A. J. ;
Uchikoga, S. ;
Legre, M. ;
Robyr, S. ;
Trinkler, P. ;
Monat, L. ;
Page, J. -B. ;
Ribordy, G. ;
Poppe, A. ;
Allacher, A. ;
Maurhart, O. ;
Laenger, T. ;
Peev, M. ;
Zeilinger, A. .
OPTICS EXPRESS, 2011, 19 (11) :10387-10409
[9]  
Sergienko A. V, 2005, QUANTUM COMMUNICATIO
[10]  
Shibata H., 2014, OPTICS LETT, V39