共 41 条
Nanosecond laser-induced surface damage and its mechanism of CaF2 optical window at 248 nm KrF excimer laser
被引:18
作者:
Li, Xin
[1
,2
]
Dou, Xian-an
[1
,2
]
Zhu, Hong
[3
]
Hu, Yue
[4
]
Wang, Xi
[1
,2
]
机构:
[1] Natl Univ Def Technol, State Key Lab Pulsed Power Laser Technol, Hefei 230037, Peoples R China
[2] Anhui Lab Adv Laser Technol, Hefei 230037, Peoples R China
[3] Army Artillery & Air Def Acad, Key Lab Polarizat Imaging Detect Technol Anhui Pr, Hefei 230037, Peoples R China
[4] Hefei Second Sanat Retired Cadres Anhui Prov Mil, Hefei 230061, Peoples R China
关键词:
FUSED-SILICA;
CRYSTALS;
DEFECTS;
PULSES;
BULK;
D O I:
10.1038/s41598-020-62469-y
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Calcium fluoride (CaF2) crystals is a kind of important optical material for ultraviolet (UV) and deep-ultraviolet (DUV) lithography and high-power laser-related applications. However, its laser-induced damage threshold (LIDT) directly affects the laser power, so that the above-mentioned applications could be limited. Therefore, the research on the damage characteristics and laser damage resistance of CaF2 crystals is urgent. A 3D Finite-Difference Time-Domain (FDTD) method with Maxwell spinor equation is used, and the results show that the electric field intensity of rear surface is larger than that of front surface, which causes a lower threshold and is consistent with the experimental observations. And a thermo-mechanical coupled finite element model (FEM) of CaF2 with Ce2O3 impurities, which are introduced by polishing process, has semiquantitatively described the damage mechanism of CaF2 by 248 nm-excimer laser.
引用
收藏
页数:14
相关论文