On a vector-valued Hopf-Dunford-Schwartz lemma

被引:3
作者
Charpentier, S. [1 ]
Deleaval, L. [2 ]
机构
[1] Univ Lille 1, UMR 8524, Lab Paul Painleve, F-59650 Villeneuve Dascq, France
[2] Univ Paris 06, Inst Math Jussieu, F-75005 Paris, France
关键词
Maximal ergodic theorem; Semi-group; Dunkl analysis; DUNKL OPERATORS; MAXIMAL INEQUALITIES; TRANSFORM; THEOREM; SPACES;
D O I
10.1007/s11117-012-0211-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we state as a conjecture a vector-valued Hopf-Dunford-Schwartz lemma and give a partial answer to it. As an application of this powerful result, we prove some Fefferman-Stein inequalities in the setting of Dunkl analysis where covering methods are not available.
引用
收藏
页码:899 / 910
页数:12
相关论文
共 26 条
[1]  
[Anonymous], 1970, ANN MATH STUD
[2]  
[Anonymous], DEGRUYTER STUDIES MA
[3]   TRANSFERENCE OF STRONG TYPE MAXIMAL INEQUALITIES BY SEPARATION-PRESERVING REPRESENTATIONS [J].
ASMAR, N ;
BERKSON, E ;
GILLESPIE, TA .
AMERICAN JOURNAL OF MATHEMATICS, 1991, 113 (01) :47-74
[4]   ON ERGODIC THEOREM WITHOUT ASSUMPTION OF POSITIVITY [J].
CHACON, RV .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1961, 67 (02) :186-&
[5]   FACTORIZATION THEORY AND AP WEIGHTS [J].
DEFRANCIA, JLR .
AMERICAN JOURNAL OF MATHEMATICS, 1984, 106 (03) :533-547
[6]   THE DUNKL TRANSFORM [J].
DEJEU, MFE .
INVENTIONES MATHEMATICAE, 1993, 113 (01) :147-162
[7]   Two results on the Dunkl maximal operator [J].
Deleaval, Luc .
STUDIA MATHEMATICA, 2011, 203 (01) :47-68
[8]   Fefferman-Stein inequalities for the Z2d Dunkl maximal operator [J].
Deleaval, Luc .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 360 (02) :711-726
[9]  
Dunford N., 1958, Pure and Applied Mathematics