A Practical Tutorial on Graph Neural Networks

被引:4
作者
Ward, Isaac Ronald [1 ,2 ]
Joyner, Jack [3 ]
Lickfold, Casey [4 ]
Guo, Yulan [5 ,7 ]
Bennamoun, Mohammed [6 ]
机构
[1] ISOLABS, 311 Geneva St,Glendale, Glendale, CA 91206 USA
[2] Univ Southern Calif, Los Angeles, CA 90007 USA
[3] ISOLABS, 35 Stirling Hwy, Crawley, WA 6009, Australia
[4] ISOLABS, 14 Yilgarn St, Shenton Pk, WA 6008, Australia
[5] Sun Yat Sen Univ, Guangzhou, Peoples R China
[6] Univ Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
[7] Natl Univ Def Technol, 137 Yanwachi, Changsha 410073, Hunan, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Graph neural network; tutorial; artificial intelligence; recurrent; convolutional; auto encoder; decoder; machine learning; deep learning; papers with code; theory; applications;
D O I
10.1145/3503043
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Graph neural networks (GNNs) have recently grown in popularity in the field of artificial intelligence (AI) due to their unique ability to ingest relatively unstructured data types as input data. Although some elements of the GNN architecture are conceptually similar in operation to traditional neural networks (and neural network variants), other elements represent a departure from traditional deep learning techniques. This tutorial exposes the power and novelty of GNNs to AI practitioners by collating and presenting details regarding the motivations, concepts, mathematics, and applications of the most common and performant variants of GNNs. Importantly, we present this tutorial concisely, alongside practical examples, thus providing a practical and accessible tutorial on the topic of GNNs.
引用
收藏
页数:35
相关论文
共 111 条
[1]   Computing Graph Neural Networks: A Survey from Algorithms to Accelerators [J].
Abadal, Sergi ;
Jain, Akshay ;
Guirado, Robert ;
Lopez-Alonso, Jorge ;
Alarcon, Eduard .
ACM COMPUTING SURVEYS, 2022, 54 (09)
[2]  
Assran M, 2021, Arxiv, DOI arXiv:2104.13963
[3]  
Beck D, 2018, Arxiv, DOI arXiv:1806.09835
[4]   Recursive processing of cyclic graphs [J].
Bianchini, M ;
Gori, M ;
Scarselli, F .
PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, :154-159
[5]  
Bojchevski Aleksandar, 2018, ARXIV
[6]  
Bresson X, 2018, Arxiv, DOI arXiv:1711.07553
[7]   Geometric Deep Learning Going beyond Euclidean data [J].
Bronstein, Michael M. ;
Bruna, Joan ;
LeCun, Yann ;
Szlam, Arthur ;
Vandergheynst, Pierre .
IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (04) :18-42
[8]  
Bruna J, 2014, P 2 INT C LEARN REPR
[9]  
Cao SS, 2016, AAAI CONF ARTIF INTE, P1145
[10]   Emerging Properties in Self-Supervised Vision Transformers [J].
Caron, Mathilde ;
Touvron, Hugo ;
Misra, Ishan ;
Jegou, Herve ;
Mairal, Julien ;
Bojanowski, Piotr ;
Joulin, Armand .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :9630-9640