Algebraic structure on Dirichlet spaces

被引:4
作者
Fang, Xing [1 ]
He, Ping [2 ]
Ying, Jian Gang [3 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
[2] Shanghai Univ Finance & Econ, Dept Appl Math, Shanghai 200080, Peoples R China
[3] Fudan Univ, Inst Math, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Dirichlet form; Markovian property; algebra;
D O I
10.1007/s10114-005-0583-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this short note, we shall give a few equivalent conditions for a closed form to be Markovian, and prove that the closure of a sub-algebra of bounded functions in a Dirichlet space must be Markovian. We also study the regular representation of Dirichlet spaces and the classification of Dirichlet subspaces.
引用
收藏
页码:723 / 728
页数:6
相关论文
共 7 条
[1]  
[Anonymous], 1980, FUNCTIONAL ANAL
[2]   A note on regular Dirichlet subspaces (vol 131, pg 1607, 2003) [J].
Fukushima, M ;
Ying, JG .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (05) :1559-1559
[3]  
Fukushima M., 2011, De Gruyter Stud. Math., V19
[4]  
Gillman L., 1960, RINGS CONTINUOUS FUN
[5]  
Ma Z. M., 1992, INTRO THEORY NONSYMM
[6]   Killing and subordination [J].
Ying, JG .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (07) :2215-2222
[7]  
[No title captured]