Research on deposited tracks and microstructures of AlSi10Mg alloy produced by selective laser melting

被引:21
作者
Dong, Sensen [1 ]
Zhang, Xiaoxun [1 ]
Ma, Fang [2 ]
Jiang, Juze [1 ]
Yang, Wei [1 ]
机构
[1] Shanghai Univ Engn Sci, Sch Mat Engn, 333 Longteng Rd, Shanghai 201620, Peoples R China
[2] Shanghai Univ Engn Sci, Sch Mech & Automot Engn, 333 Longteng Rd, Shanghai 201620, Peoples R China
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2020年 / 126卷 / 08期
基金
中国国家自然科学基金;
关键词
Selective laser melting; AlSi10Mg alloy; Deposited tracks; Microstructure; Transient thermal gradient; Microhardness; MECHANICAL-PROPERTIES; COMPONENTS; POWDERS;
D O I
10.1007/s00339-020-03826-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The selective laser melting (SLM) process parameters significantly affect the bonding of melting powders and the substrate or deposited layer, and the microstructure of end-use components. In this study, single track, double track and cubic sample SLM experiments were carried out to investigate the effect of process parameters on the surface morphology of SLM-fabricated AlSi10Mg alloy. The hierarchical microstructures discriminated by the Si phase are observed in SLM-processed AlSi10Mg samples. The formation mechanism of the hierarchical microstructures is elucidated. The formula proved that the solidification rate (R) increases gradually from the boundary to the center of the melt pool. Coarse zones are formed by the instantaneous existence of an extremely high ratio of thermal gradient (G) and solidification rate at the melt pool boundary, where solidification microstructure grows planar. With the heat propagating, a gradual change of the G/R ratio appears and the microstructure turns to columnar-dendritic growth, creating the fine zones.
引用
收藏
页数:10
相关论文
共 28 条
[1]  
Aboulkhair N.T., 2014, Addit Manuf, V1-4, P77, DOI [10.1016/j.addma.2014.08.001, DOI 10.1016/J.ADDMA.2014.08.001]
[2]  
Alloy J, 2018, COMPD, V734, P1414
[3]   Selective laser melting of AlSi10 Mg: Influence of process parameters on Mg2Si precipitation and Si spheroidization [J].
Biffi, C. A. ;
Fiocchi, J. ;
Tuissi, A. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 755 :100-107
[4]   Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior [J].
Brandl, Erhard ;
Heckenberger, Ulrike ;
Holzinger, Vitus ;
Buchbinder, Damien .
MATERIALS & DESIGN, 2012, 34 :159-169
[5]   Additive manufacturing of metallic components - Process, structure and properties [J].
DebRoy, T. ;
Wei, H. L. ;
Zuback, J. S. ;
Mukherjee, T. ;
Elmer, J. W. ;
Milewski, J. O. ;
Beese, A. M. ;
Wilson-Heid, A. ;
De, A. ;
Zhang, W. .
PROGRESS IN MATERIALS SCIENCE, 2018, 92 :112-224
[6]   Research on metallurgical bonding of selective laser melted AlSi10Mg alloy [J].
Dong, Sensen ;
Zhang, Xiaoxun ;
Ma, Fang ;
Jiang, Juze ;
Yang, Wei ;
Lin, Zhixiong ;
Chen, Chuanbo .
MATERIALS RESEARCH EXPRESS, 2020, 7 (02)
[7]   Additive manufacturing of metals [J].
Herzog, Dirk ;
Seyda, Vanessa ;
Wycisk, Eric ;
Emmelmann, Claus .
ACTA MATERIALIA, 2016, 117 :371-392
[8]   Mechanical properties of AlSi10Mg produced by Selective Laser Melting [J].
Kempen, K. ;
Thijs, L. ;
Van Humbeeck, J. ;
Kruth, J. -P. .
LASER ASSISTED NET SHAPE ENGINEERING 7 (LANE 2012), 2012, 39 :439-446
[9]   Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing [J].
King, Wayne E. ;
Barth, Holly D. ;
Castillo, Victor M. ;
Gallegos, Gilbert F. ;
Gibbs, John W. ;
Hahn, Douglas E. ;
Kamath, Chandrika ;
Rubenchik, Alexander M. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2014, 214 (12) :2915-2925
[10]   THEORY OF MICROSTRUCTURAL DEVELOPMENT DURING RAPID SOLIDIFICATION [J].
KURZ, W ;
GIOVANOLA, B ;
TRIVEDI, R .
ACTA METALLURGICA, 1986, 34 (05) :823-830