Naishul's theorem for fibered holomorphic maps

被引:0
作者
Ponce, Mario [1 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Math, Santiago 22, Chile
关键词
Rotation Number; Local Dynamic; Invariant Torus; Invariant Curve; Zero Section;
D O I
10.1007/s00209-011-0893-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the fibered rotation number associated to an indifferent invariant curve for a fibered holomorphic map is a topological invariant.
引用
收藏
页码:867 / 875
页数:9
相关论文
共 8 条
[1]   A TOPOLOGICAL INVARIANT FOR VOLUME PRESERVING DIFFEOMORPHISMS [J].
GAMBAUDO, JM ;
PECOU, E .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1995, 15 :535-541
[2]  
Gambaudo JM, 1996, CR ACAD SCI I-MATH, V323, P397
[4]  
KATOK A., 1995, Introduction to the Modern Theory of Dynamical Systems
[5]   A topological characterization of holomorphic parabolic germs in the plane [J].
Le Roux, Frederic .
FUNDAMENTA MATHEMATICAE, 2008, 198 (01) :77-94
[6]  
Naishul V. A., 1982, T MOSK MAT OBS, V44, P235
[7]   Local dynamics for fibred holomorphic transformations [J].
Ponce, Mario .
NONLINEARITY, 2007, 20 (12) :2939-2955
[8]   Rotation numbers for quasi-periodically forced monotone circle maps [J].
Stark, J ;
Feudel, U ;
Glendinning, PA ;
Pikovsky, A .
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2002, 17 (01) :1-28