Packing densities and simulated tempering for hard core Gibbs point processes

被引:18
作者
Mase, S
Moller, J
Stoyan, D
Waagepetersen, RP
Döge, G
机构
[1] Tokyo Inst Technol, Dept Math & Comp Sci, Meguro Ku, Tokyo 1528552, Japan
[2] Univ Aalborg, Dept Math Sci, DK-9220 Aalborg O, Denmark
[3] Bergakad Freiberg, Inst Stochast, D-09596 Freiberg, Germany
关键词
closest packing density; hard core Gibbs point processes; intensity; Markov chain Monte Carlo; Metropolis-Hastings; phase transition; simulated tempering; spatial statistics; statistical physics; stochastic geometry;
D O I
10.1023/A:1014662415827
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Monotonicity and convergence properties of the intensity of hard core Gibbs point processes are investigated and compared to the closest packing density. For such processes simulated tempering is shown to be an efficient alternative to commonly used Markov chain Monte Carlo algorithms. Various spatial characteristics of the pure hard core process are studied based on samples obtained with the simulated tempering algorithm.
引用
收藏
页码:661 / 680
页数:20
相关论文
共 41 条
  • [1] PHASE TRANSITION IN ELASTIC DISKS
    ALDER, BJ
    WAINWRIGHT, TE
    [J]. PHYSICAL REVIEW, 1962, 127 (02): : 359 - &
  • [2] PHASE TRANSITION FOR A HARD SPHERE SYSTEM
    ALDER, BJ
    WAINWRIGHT, TE
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1957, 27 (05) : 1208 - 1209
  • [3] Allen M. P., 1987, Computer Simulation of Liquids
  • [4] [Anonymous], 1992, Stochastic Stability of Markov chains
  • [5] BOURBAKI N, 1958, ELEMENTS MATH FONCTI
  • [6] Daley D. J., 2002, INTRO THEORY POINT P
  • [7] Diggle P.J., 1983, Statistical analysis of spatial point patterns
  • [8] FERGUSON SP, 1998, UNPUB FORMULATION KE
  • [9] ONE-STAGE CONTINUOUS MELTING TRANSITION IN 2 DIMENSIONS
    FERNANDEZ, JF
    ALONSO, JJ
    STANKIEWICZ, J
    [J]. PHYSICAL REVIEW LETTERS, 1995, 75 (19) : 3477 - 3480
  • [10] Phase transition in continuum Potts models
    Georgii, HO
    Haggstrom, O
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 181 (02) : 507 - 528