Image Clustering Using Particle Swarm Optimization

被引:0
作者
Wong, Man To [1 ]
He, Xiangjian [1 ]
Yeh, Wei-Chang [2 ]
机构
[1] Univ Technol Sydney, Ctr Innovat IT Serv & Applicat, Sydney Broadway, NSW 2007, Australia
[2] Natl Tsing Hua Univ, Dept Ind Engn & Engn Management, Hsinchu 300, Taiwan
来源
2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC) | 2011年
关键词
particle swarm optimization; image clustering; K-means clustering; partitional clustering;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes an image clustering algorithm using Particle Swarm Optimization (PSO) with two improved fitness functions. The PSO clustering algorithm can be used to find centroids of a user specified number of clusters. Two new fitness functions are proposed in this paper. The PSO-based image clustering algorithm with the proposed fitness functions is compared to the K-means clustering. Experimental results show that the PSO-based image clustering approach, using the improved fitness functions, can perform better than K-means by generating more compact clusters and larger inter-cluster separation.
引用
收藏
页码:262 / 268
页数:7
相关论文
共 17 条
[1]  
[Anonymous], 1998, P IEEE INT C EV COMP
[2]  
[Anonymous], MHS 95 P 6 INT S MIC
[3]  
[Anonymous], INT S MOD IMPL COMPL
[4]  
[Anonymous], 2006, Introduction to Data Mining
[5]  
[Anonymous], IEEE T SYSTEMS MAN A
[6]  
Coello CAC, 2002, IEEE C EVOL COMPUTAT, P1051, DOI 10.1109/CEC.2002.1004388
[7]  
CoelloCoello CA, 1996, THESIS
[8]  
Eberhart RC, 2001, IEEE C EVOL COMPUTAT, P81, DOI 10.1109/CEC.2001.934374
[9]  
Esmin A. A. A., 2008, P IEEE C EV COMP CEC
[10]  
Gose E., 1996, PATTERN RECOGNITION