Fault Diagnosis of UHVDC Transmission Line Based on Deep Neural Network

被引:3
|
作者
Wang, Lei [1 ]
Zhao, Qingsheng [1 ]
Liang, Dingkang [1 ]
机构
[1] Taiyuan Univ Technol, Shanxi Key Lab Power Syst, Operat & Control Coll, Taiyuan, Peoples R China
来源
2022 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA (I&CPS ASIA 2022) | 2022年
关键词
UHVDC Transmission Lines; Fault Diagnosis; Convolutional Neural Network; Gated Recurrent Unit; Deep Learning; SYSTEM;
D O I
10.1109/ICPSAsia55496.2022.9949678
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Existing ultra high voltage direct current (UHVDC) fault detection methods have low sensitivity and are difficult to identify high resistance ground faults. A fault diagnosis method for UHVDC transmission system based on the combination of Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU) is proposed. In this method, 16 electrical signals such as DC line voltage and DC line current are taken as the input of the fault diagnosis model, and then the features are extracted adaptively through the convolutional neural network, and the original features are dimensionally reduced. Finally, the new features are classified by the gated cyclic element network. The +/- 800kV UHVDC transmission line model was built by MATLAB/Simulink simulation software, and simulation experiments were conducted on different fault areas and fault types. The test results show that the proposed fault diagnosis method can reliably and accurately identify various internal and external faults of UHVDC transmission lines, and has a strong ability to withstand transition resistance.
引用
收藏
页码:445 / 450
页数:6
相关论文
共 50 条
  • [41] Intelligent fault diagnosis for rolling bearing based on improved convolutional neural network
    Gong W.-F.
    Chen H.
    Zhang Z.-H.
    Zhang M.-L.
    Guan C.
    Wang X.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2020, 33 (02): : 400 - 413
  • [42] Research on Fault Diagnosis Algorithm Based on Structure Optimization for Convolutional Neural Network
    Li, Xiaolong
    Wang, Sen
    Zhou, Wei
    Huang, Qi
    Feng, Bowen
    Liu, Lilan
    PROCEEDINGS OF 2019 IEEE 8TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC 2019), 2019, : 880 - 886
  • [43] A novel deep learning model for fault diagnosis of rolling-element bearing based on convolution neural network and recurrent neural network
    Song, Xudong
    Lyu, Xinran
    Sun, Shaocong
    Li, Changxian
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2023,
  • [44] Fault Diagnosis of Planetary Gearbox Based on Signal Denoising and Convolutional Neural Network
    Sun, Guodong
    Wang, Youren
    Sun, Canfei
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-PARIS), 2019, : 96 - 99
  • [45] An improved deep convolutional neural network with multi-scale information for bearing fault diagnosis
    Huang, Wenyi
    Cheng, Junsheng
    Yang, Yu
    Guo, Gaoyuan
    NEUROCOMPUTING, 2019, 359 : 77 - 92
  • [46] Computer Network Fault Diagnosis Based On Neural Network
    Qian, Wang
    INTERNATIONAL JOURNAL OF FUTURE GENERATION COMMUNICATION AND NETWORKING, 2015, 8 (05): : 39 - 49
  • [47] Bearing Fault Diagnosis with a Feature Fusion Method Based on an Ensemble Convolutional Neural Network and Deep Neural Network
    Li, Hongmei
    Huang, Jinying
    Ji, Shuwei
    SENSORS, 2019, 19 (09)
  • [48] Deep-Learning Method Based on 1D Convolutional Neural Network for Intelligent Fault Diagnosis of Rotating Machines
    Chuya-Sumba, Jorge
    Alonso-Valerdi, Luz Maria
    Ibarra-Zarate, David I.
    APPLIED SCIENCES-BASEL, 2022, 12 (04):
  • [49] Intelligent machine fault diagnosis based on deep transfer convolutional neural network and extreme learning machine
    Cen, Jian
    Chen, Zhihao
    Wu, Yinbo
    Yang, Zhuohong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2023, 237 (09) : 2201 - 2212
  • [50] Application of RBF Neural Network in Fault Diagnosis for Transmission Gear
    Liu Xi-mei
    Yao Xiao-hui
    Zhao Qian
    Guo Hong-mi
    MATERIALS SCIENCE AND INFORMATION TECHNOLOGY, PTS 1-8, 2012, 433-440 : 7563 - 7568