A Fuzzy Clustering with Bounded Spatial Probability for Image Segmentation

被引:0
|
作者
Ji, Zexuan [1 ]
Sun, Quansen [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing, Jiangsu, Peoples R China
来源
2017 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE) | 2017年
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
image segmentation; fuzzy c-means; bounded distribution; mean template; GAUSSIAN MIXTURE MODEL; LOCAL INFORMATION; MEAN TEMPLATE; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate image segmentation is an important issue in image processing, where unsupervised clustering models play an important part and have been proven to be effective. However, most clustering methods suffer from limited segmentation accuracy without considering spatial information or bounded support region for practical data. In this paper, a bounded spatial probability based fuzzy clustering algorithm is proposed for image segmentation. A bounded distribution to fit the bounded data is utilized and a new conditional probability is constructed based on the immediate neighboring probabilities. Then a parameter-free mean template is presented to impose the spatial information more precisely. Finally, the negative logarithmical conditional probability is utilized as the dissimilarity function to describe the observed data. We evaluated our algorithm against several state-of-the-art segmentation approaches on brain magnetic resonance images. Our results suggest that the proposed algorithm is more robust to noise and textures, and can produce more accurate segmentation results.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] AN EFFECTIVE FUZZY CLUSTERING ALGORITHM FOR IMAGE SEGMENTATION
    Zhang, Hui
    Wu, Q. M. Jonathan
    Thanh Minh Nguyen
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 1483 - 1487
  • [2] Multiple Spatial Information Weighted Fuzzy Clustering for Image Segmentation
    Liu, Xiangdao
    Zhou, Jin
    Jiang, Hui
    Chen, C. L. Philip
    Zhang, Tong
    Wang, Lin
    Han, Shiyuan
    Chen, Yuehui
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 4159 - 4164
  • [3] Fuzzy spectral clustering with robust spatial information for image segmentation
    Liu, Hanqiang
    Zhao, Feng
    Jiao, Licheng
    APPLIED SOFT COMPUTING, 2012, 12 (11) : 3636 - 3647
  • [4] Incorporating Adaptive Local Information Into Fuzzy Clustering for Image Segmentation
    Liu, Guoying
    Zhang, Yun
    Wang, Aimin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (11) : 3990 - 4000
  • [5] Automatic Fuzzy Clustering Framework for Image Segmentation
    Lei, Tao
    Liu, Peng
    Jia, Xiaohong
    Zhang, Xuande
    Meng, Hongying
    Nandi, Asoke K.
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (09) : 2078 - 2092
  • [6] Fuzzy c-means clustering algorithm with deformable spatial information for image segmentation
    Zhang, Hang
    Liu, Jian
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (08) : 11239 - 11258
  • [7] A multiobjective spatial fuzzy clustering algorithm for image segmentation
    Zhao, Feng
    Liu, Hanqiang
    Fan, Jiulun
    APPLIED SOFT COMPUTING, 2015, 30 : 48 - 57
  • [8] Fuzzy c-means clustering with spatial information for image segmentation
    Chuang, KS
    Tzeng, HL
    Chen, S
    Wu, J
    Chen, TJ
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2006, 30 (01) : 9 - 15
  • [9] Image segmentation based on fuzzy clustering with neighborhood information
    Yang, Yong
    OPTICA APPLICATA, 2009, 39 (01) : 135 - 147
  • [10] An adaptive spatial information-theoretic fuzzy clustering algorithm for image segmentation
    Wang, Zhimin
    Song, Qing
    Soh, Yeng Chai
    Sim, Kang
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2013, 117 (10) : 1412 - 1420