Graphene oxide as a chemically tunable 2-D material for visible-light photocatalyst applications

被引:114
作者
Jiang, Xue [1 ,2 ]
Nisar, Jawad [3 ]
Pathak, Biswarup [3 ,4 ]
Zhao, Jijun [2 ]
Ahuja, Rajeev [1 ,3 ]
机构
[1] Royal Inst Technol KTH, Dept Mat & Engn, S-10044 Stockholm, Sweden
[2] Dalian Univ Technol, Minist Educ, Key Lab Mat Modificat Laser Ion & Electron Beams, Dalian 116024, Peoples R China
[3] Uppsala Univ, Dept Phys & Astron, Condensed Matter Theory Grp, S-75120 Uppsala, Sweden
[4] Indian Inst Technol Indore, Sch Basic Sci, Dept Chem, Indore 452017, Madhya Pradesh, India
基金
瑞典研究理事会;
关键词
Ab initio calculation; Photolysis; Energy conversion; Renewable resource; Water splitting; HOLE TRANSPORT LAYER; HYDROGEN-PRODUCTION; ELECTRONIC-STRUCTURE; GRAPHITE OXIDE; WATER; EXCHANGE; DIAMOND;
D O I
10.1016/j.jcat.2012.12.022
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To elucidate the usage of graphene oxide (GO) as a photocatalysis material, we have studied the effect of epoxy and hydroxyl functionalization on the electronic structure, work function, CBM/VBM position, and optical absorption spectra of GO using density functional theory calculations. By varying the coverage and relative ratio of the surface epoxy (-O-) and hydroxyl (-OH) groups, both band gap and work function of the GO materials can be tuned to meet the requirement of photocatalyst. Interestingly, the electronic structures of GO materials with 40-50% (33-67%) coverage and OH:O ratio of 2:1(1:1) are suitable for both reduction and oxidation reactions for water splitting. Among of these systems, the GO composition with 50% coverage and OH:O (1:1) ratio can be very promising materials for visible-light-driven photocatalyst. Our results not only explain the recent experimental observations about 2-D graphene oxide as promising visible-light-driven photocatalyst materials but can also be very helpful in designing the optimal composition for higher performance. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:204 / 209
页数:6
相关论文
共 55 条
[1]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[2]   Modeling of graphite oxide [J].
Boukhvalov, D. W. ;
Katsnelson, M. I. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (32) :10697-10701
[3]   Water dynamics in graphite oxide investigated with neutron scattering [J].
Buchsteiner, Alexandra ;
Lerf, Anton ;
Pieper, Joerg .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (45) :22328-22338
[4]   Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide [J].
Cai, Weiwei ;
Piner, Richard D. ;
Stadermann, Frank J. ;
Park, Sungjin ;
Shaibat, Medhat A. ;
Ishii, Yoshitaka ;
Yang, Dongxing ;
Velamakanni, Aruna ;
An, Sung Jin ;
Stoller, Meryl ;
An, Jinho ;
Chen, Dongmin ;
Ruoff, Rodney S. .
SCIENCE, 2008, 321 (5897) :1815-1817
[5]   Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple [J].
Chakrapani, Vidhya ;
Angus, John C. ;
Anderson, Alfred B. ;
Wolter, Scott D. ;
Stoner, Brian R. ;
Sumanasekera, Gamini U. .
SCIENCE, 2007, 318 (5855) :1424-1430
[6]   Graphene-based materials in electrochemistry [J].
Chen, Da ;
Tang, Longhua ;
Li, Jinghong .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (08) :3157-3180
[7]   Electron affinity of the bare and hydrogen covered single crystal diamond (111) surface [J].
Cui, JB ;
Ristein, J ;
Ley, L .
PHYSICAL REVIEW LETTERS, 1998, 81 (02) :429-432
[8]   ABINITIO DETERMINATION OF SUBSTITUENT CONSTANTS IN A DENSITY FUNCTIONAL THEORY FORMALISM - CALCULATION OF INTRINSIC GROUP ELECTRONEGATIVITY, HARDNESS, AND SOFTNESS [J].
DEPROFT, F ;
LANGENAEKER, W ;
GEERLINGS, P .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (09) :1826-1831
[9]   Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide [J].
Erickson, Kris ;
Erni, Rolf ;
Lee, Zonghoon ;
Alem, Nasim ;
Gannett, Will ;
Zettl, Alex .
ADVANCED MATERIALS, 2010, 22 (40) :4467-4472
[10]   Linear optical properties in the projector-augmented wave methodology -: art. no. 045112 [J].
Gajdos, M ;
Hummer, K ;
Kresse, G ;
Furthmüller, J ;
Bechstedt, F .
PHYSICAL REVIEW B, 2006, 73 (04)