Non-homogeneous Tb Theorem and Random Dyadic Cubes on Metric Measure Spaces

被引:99
作者
Hytonen, Tuomas [1 ]
Martikainen, Henri [1 ]
机构
[1] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
基金
芬兰科学院;
关键词
Calderon-Zygmund operator; Non-doubling measure; Probabilistic constructions in metric spaces; CALDERON-ZYGMUND OPERATORS; INEQUALITIES;
D O I
10.1007/s12220-011-9230-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a Tb theorem on quasimetric spaces equipped with what we call an upper doubling measure. This is a property that encompasses both the doubling measures and those satisfying the upper power bound mu(B(x,r))a parts per thousand currency signCr (d) . Our spaces are only assumed to satisfy the geometric doubling property: every ball of radius r can be covered by at most N balls of radius r/2. A key ingredient is the construction of random systems of dyadic cubes in such spaces.
引用
收藏
页码:1071 / 1107
页数:37
相关论文
共 14 条