Non-homogeneous Tb Theorem and Random Dyadic Cubes on Metric Measure Spaces

被引:98
作者
Hytonen, Tuomas [1 ]
Martikainen, Henri [1 ]
机构
[1] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
基金
芬兰科学院;
关键词
Calderon-Zygmund operator; Non-doubling measure; Probabilistic constructions in metric spaces; CALDERON-ZYGMUND OPERATORS; INEQUALITIES;
D O I
10.1007/s12220-011-9230-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a Tb theorem on quasimetric spaces equipped with what we call an upper doubling measure. This is a property that encompasses both the doubling measures and those satisfying the upper power bound mu(B(x,r))a parts per thousand currency signCr (d) . Our spaces are only assumed to satisfy the geometric doubling property: every ball of radius r can be covered by at most N balls of radius r/2. A key ingredient is the construction of random systems of dyadic cubes in such spaces.
引用
收藏
页码:1071 / 1107
页数:37
相关论文
共 14 条
[1]  
[Anonymous], 1971, Lecture Notes in Mathematics
[2]  
Bramanti M, 2010, REV MAT IBEROAM, V26, P347
[3]  
Christ M., 1990, Colloq. Math., V61, P601
[4]  
David G., 1985, REV MAT IBEROAM, V1, P1, DOI [10.4171/RMI/17, 10.4171/rmi/17]
[5]   Lipschitz spaces and Calderon-Zygmund operators associated to non-doubling measures [J].
García-Cuerva, J ;
Gatto, AE .
PUBLICACIONS MATEMATIQUES, 2005, 49 (02) :285-296
[6]   A FRAMEWORK FOR NON-HOMOGENEOUS ANALYSIS ON METRIC SPACES, AND THE RBMO SPACE OF TOLSA [J].
Hytonen, Tuomas .
PUBLICACIONS MATEMATIQUES, 2010, 54 (02) :485-504
[7]   Every complete doubling metric space carries a doubling measure [J].
Luukkainen, J ;
Saksman, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (02) :531-534
[8]   LIPSCHITZ FUNCTIONS ON SPACES OF HOMOGENEOUS TYPE [J].
MACIAS, RA ;
SEGOVIA, C .
ADVANCES IN MATHEMATICS, 1979, 33 (03) :257-270
[9]  
MCINTOSH A, 1985, CR ACAD SCI I-MATH, V301, P395
[10]   The Tb-theorem on non-homogeneous spaces [J].
Nazarov, F ;
Treil, S ;
Volberg, A .
ACTA MATHEMATICA, 2003, 190 (02) :151-239