Experiments and numerical simulations of single particle foreign object damage-like impacts of thermal barrier coatings

被引:17
作者
Crowell, M. W. [1 ]
Schaedler, T. A. [2 ]
Hazel, B. H. [4 ]
Konitzer, D. G. [4 ]
McMeeking, R. M. [3 ,5 ,6 ]
Evans, A. G. [3 ,5 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] HRL Labs, Malibu, CA 90265 USA
[3] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
[4] Gen Elect Aviat, Cincinnati, OH 45215 USA
[5] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
[6] Univ Aberdeen, Sch Engn, Kings Coll, Aberdeen AB24 3UE, Scotland
关键词
Ceramics; Finite element analysis; Impact behavior; Dynamic phenomena; HIGH STRAIN RATES; BAND FORMATION; VISCOUS DRAG; OXIDES; EROSION; DISLOCATIONS; DEFORMATION;
D O I
10.1016/j.ijimpeng.2011.10.006
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The thermal barrier coatings (TBCs) used on the hot section components of many aero-turbines face a variety of compromising conditions while in service. One condition of particular concern on high-pressure turbine (HPT) blades is foreign object damage (FOD) wherein hard foreign particles, often found in the gas path of operating aero-turbines, are struck by the leading edge of the HPT blades. Even single impacts of this kind can cause complete spallation of the local TBC, removing thermal protection on one of the hottest component surfaces in the entire engine. We present here the first experimental FOD study we know of where the impacting particle size, geometry, and velocity, as well as TBC temperature, are well known at each impact site. We then quantitatively compare the experimental impact crater profiles with numerical simulations of equivalent impact scenarios, finding excellent agreement and thereby validating the numerical modeling techniques and parameters. Finally, we present a numerical parameter study of particle and TBC material properties using the validated model. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:116 / 124
页数:9
相关论文
共 23 条
[1]  
Ashby M.F., 1982, DEFORMATION MECH MAP
[2]   Ferroelastic and plastic deformation of t′-zirconia single crystals [J].
Baither, D ;
Bartsch, M ;
Baufeld, B ;
Tikhonovsky, A ;
Foitzik, A ;
Rühle, M ;
Messerschmidt, U .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2001, 84 (08) :1755-1762
[3]   Development of 1232°C (2250°F) erosion and impact tests for thermal barrier coatings [J].
Bruce, RW .
TRIBOLOGY TRANSACTIONS, 1998, 41 (04) :399-410
[4]   Simulation of the high temperature impression of thermal barrier coatings with columnar microstructure [J].
Chen, X ;
Hutchinson, JW ;
Evans, AG .
ACTA MATERIALIA, 2004, 52 (03) :565-571
[5]   Dynamics of kink band formation in columnar thermal barrier oxides [J].
Crowell, M. W. ;
Wang, J. ;
McMeeking, R. M. ;
Evans, A. G. .
ACTA MATERIALIA, 2008, 56 (16) :4150-4159
[6]   Isotropic constitutive models for metallic foams [J].
Deshpande, VS ;
Fleck, NA .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2000, 48 (6-7) :1253-1283
[7]   Mechanical Characterization of Coatings Using Microbeam Bending and Digital Image Correlation Techniques [J].
Eberl, C. ;
Gianola, D. S. ;
Hemker, K. J. .
EXPERIMENTAL MECHANICS, 2010, 50 (01) :85-97
[8]   The influence of oxides on the performance of advanced gas turbines [J].
Evans, A. G. ;
Clarke, D. R. ;
Levi, C. G. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2008, 28 (07) :1405-1419
[9]   Scaling laws governing the erosion and impact resistance of thermal barrier coatings [J].
Evans, AG ;
Fleck, NA ;
Faulhaber, S ;
Vermaak, N ;
Maloney, M ;
Darolia, R .
WEAR, 2006, 260 (7-8) :886-894
[10]   Mechanisms controlling the durability of thermal barrier coatings [J].
Evans, AG ;
Mumm, DR ;
Hutchinson, JW ;
Meier, GH ;
Pettit, FS .
PROGRESS IN MATERIALS SCIENCE, 2001, 46 (05) :505-553