On solutions of space-fractional diffusion equations by means of potential wells

被引:29
作者
Fu, Yongqiang [1 ]
Pucci, Patrizia [2 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[2] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
基金
中国国家自然科学基金;
关键词
potential wells; space-fractional wave equations; global solutions; fractional Sobolev spaces; NONLINEAR HYPERBOLIC-EQUATIONS; WAVE-EQUATIONS; OPERATORS; ENERGY; TERMS;
D O I
10.14232/ejqtde.2016.1.70
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the initial boundary value problem of space-fractional diffusion equations. First, we introduce a family of potential wells. Then we show the existence of global weak solutions, provided that the initial energy J (u(0)) is positive and less than the potential well depth d. Finally, we establish the vacuum isolating and blow up of strong solutions.
引用
收藏
页数:17
相关论文
共 36 条
[1]  
[Anonymous], ANOMALOUS TRANSPORT
[2]  
[Anonymous], 2000, FRACTIONAL TIME EVOL, DOI DOI 10.1142/3779
[3]  
[Anonymous], FRACTIONAL CALCULUS
[4]   Global Nonexistence for Nonlinear Kirchhoff Systems [J].
Autuori, Giuseppina ;
Pucci, Patrizia ;
Salvatori, Maria Cesarina .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 196 (02) :489-516
[5]   Space-Time Estimates on Damped Fractional Wave Equation [J].
Chen, Jiecheng ;
Fan, Dashan ;
Zhang, Chunjie .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[6]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[7]   Monotone operator theory for unsteady problems in variable exponent spaces [J].
Diening, L. ;
Naegele, P. ;
Ruzicka, M. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2012, 57 (11) :1209-1231
[8]   Extending the D'alembert solution to space-time Modified Riemann-Liouville fractional wave equations [J].
Godinho, Cresus F. L. ;
Weberszpil, J. ;
Helayel-Neto, J. A. .
CHAOS SOLITONS & FRACTALS, 2012, 45 (06) :765-771
[9]   Multidimensional solutions of space-fractional diffusion equations [J].
Hanyga, A .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2016) :2993-3005
[10]   Further solutions of fractional reaction-diffusion equations in terms of the H-function [J].
Haubold, H. J. ;
Mathai, A. M. ;
Saxena, R. K. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (05) :1311-1316