Finite time chaos control for a class of chaotic systems with input nonlinearities via TSM scheme

被引:32
作者
Wang, Hua [1 ]
Zhang, Xu-Liang [1 ]
Wang, Xiao-Hua [1 ]
Zhu, Xiao-Jin [1 ]
机构
[1] Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai Key Lab Power Stn Automat Technol, Shanghai 200072, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Semifinite time chaos synchronization; Unmatched uncertainties; Input nonlinearities; Terminal sliding mode; SLIDING MODE CONTROL; SYNCHRONIZATION; STABILIZATION;
D O I
10.1007/s11071-012-0398-y
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper investigates nonsingular terminal sliding mode control for a class of uncertain systems with nonlinear inputs and its application in chaos control. When some of the system states are finite-time stable, the nonlinear items that coupled with these states may come into zeros in other subsystems. This will simplify the stability analysis of the whole system greatly. Compared with the traditional finite-time stabilization design method, the introduction of the terminal sliding mode can reduce the input dimensions. Only one control input is requested to realize chaos control of the Liu system when unmatched uncertainties and input nonlinearity coexist. The parameter matrices in the TSM can be determined through the solution of LMIS. Simulation results are given to demonstrate the effectiveness of the proposed method.
引用
收藏
页码:1941 / 1947
页数:7
相关论文
共 13 条
[1]   Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique [J].
Aghababa, Mohammad Pourmahmood ;
Khanmohammadi, Sohrab ;
Alizadeh, Ghassem .
APPLIED MATHEMATICAL MODELLING, 2011, 35 (06) :3080-3091
[2]   Finite-time stability of continuous autonomous systems [J].
Bhat, SP ;
Bernstein, DS .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (03) :751-766
[3]   Chaos control and synchronization via a novel chatter free sliding mode control strategy [J].
Li, Huaqing ;
Liao, Xiaofeng ;
Li, Chuandong ;
Li, Chaojie .
NEUROCOMPUTING, 2011, 74 (17) :3212-3222
[4]   Sliding mode control for uncertain chaotic systems with input nonlinearity [J].
Li, Juntao ;
Li, Wenlin ;
Li, Qiaoping .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (01) :341-348
[5]   Chaotic synchronization via adaptive sliding mode observers subject to input nonlinearity [J].
Lin, JS ;
Yan, JJ ;
Liao, TL .
CHAOS SOLITONS & FRACTALS, 2005, 24 (01) :371-381
[6]   Adaptive chaos control and synchronization in only locally Lipschitz systems [J].
Lin, Wei .
PHYSICS LETTERS A, 2008, 372 (18) :3195-3200
[7]   A new chaotic attractor [J].
Liu, CX ;
Liu, T ;
Liu, L ;
Liu, K .
CHAOS SOLITONS & FRACTALS, 2004, 22 (05) :1031-1038
[8]  
Venkataraman S. T., 1992, Proceedings of the 1992 American Control Conference (IEEE Cat. No.92CH3072-6), P891
[9]   Sliding mode control for chaotic systems based on LMI [J].
Wang, Hua ;
Han, Zheng-zhi ;
Xie, Qi-yue ;
Zhang, Wei .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (04) :1410-1417
[10]   Second-order terminal sliding mode controller for a class of chaotic systems with unmatched uncertainties [J].
Xiang, Wei ;
Huangpu, Yugao .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (11) :3241-3247