Sine-map Chaotic PSO-based Neural Network Predictive Control for Deployable Space Truss Structures

被引:0
作者
Zheng, Hui [1 ]
Zheng, Yongping [1 ]
Li, Ping
机构
[1] Zhejiang Univ Sci & Technol, Sch Automat & Elect Engn, Hangzhou, Zhejiang, Peoples R China
来源
2013 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE) | 2013年
关键词
Neural Network Predictive Control; Particle Swarm Optimization; Chaos; Deployable Truss Space Structures; DYNAMICS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The neural network predictive control (NNPC) based upon a novel sine-map chaotic particle swarm optimization (SCPSO), which is applied to the kinetic energy control of the deployable space truss structures (DSTS), is developed in this paper. The proposed control scheme is proved to be feasible to the kinetic energy control of the DSTS via the simulation experiment. Furthermore, the experiment demonstrates that SCPSO has better searching performances than chaotic particle swarm optimization (CPSO) and particle swarm optimization (PSO).
引用
收藏
页数:5
相关论文
共 11 条
  • [1] Nonlinear system identification for predictive control using continuous time recurrent neural networks and automatic differentiation
    Al Seyab, R. K.
    Cao, Y.
    [J]. JOURNAL OF PROCESS CONTROL, 2008, 18 (06) : 568 - 581
  • [2] A closed-loop particle swarm optimizer for multivariable process controller design
    Han, Kai
    Zhao, Jun
    Xu, Zu-hua
    Qian, Ji-xin
    [J]. JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2008, 9 (08): : 1050 - 1060
  • [3] Nonlinear dynamics of a satellite with deployable solar panel arrays
    Kuang, JL
    Meehan, PA
    Leung, AYT
    Tan, SH
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2004, 39 (07) : 1161 - 1179
  • [4] Improved particle swarm optimization combined with chaos
    Liu, B
    Wang, L
    Jin, YH
    Tang, F
    Huang, DX
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 25 (05) : 1261 - 1271
  • [5] Liu M.z., 2000, J ASTRONAUTICS, V21, P84
  • [6] Generalized predictive control using recurrent fuzzy neural networks for industrial processes
    Lu, Chi-Huang
    Tsai, Ching-Chih
    [J]. JOURNAL OF PROCESS CONTROL, 2007, 17 (01) : 83 - 92
  • [7] Enabling antenna systems for extreme deep-space mission applications
    Schulze, Ron
    Wallis, Robert E.
    Stilwell, Robert K.
    Cheng, Weilun
    [J]. PROCEEDINGS OF THE IEEE, 2007, 95 (10) : 1976 - 1985
  • [8] New chaotic PSO-based neural network predictive control for nonlinear process
    Song, Ying
    Chen, Zengqiang
    Yuan, Zhuzhi
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2007, 18 (02): : 595 - 600
  • [9] Implementation of neural network based non-linear predictive control
    Sorensen, PH
    Norgaard, M
    Ravn, O
    Poulsen, NK
    [J]. NEUROCOMPUTING, 1999, 28 : 37 - 51
  • [10] Cancelling vibrations in flexible articulated structures using non-causal inverse dynamics
    Trautt, TA
    Bayo, E
    [J]. IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2000, 147 (06): : 596 - 604