A short proof of Weyl's law for fractional differential operators

被引:15
作者
Geisinger, Leander [1 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
EIGENVALUES;
D O I
10.1063/1.4861935
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study spectral asymptotics for a large class of differential operators on an open subset of R-d with finite volume. This class includes the Dirichlet Laplacian, the fractional Laplacian, and also fractional differential operators with non-homogeneous symbols. Based on a sharp estimate for the sum of the eigenvalues we establish the first term of the semiclassical asymptotics. This generalizes Weyl's law for the Laplace operator. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:7
相关论文
共 25 条
[1]  
[Anonymous], FUNDAMENTAL PRINCIPL
[2]  
[Anonymous], 1980, TRANSL SER 2 AM MATH
[3]  
[Anonymous], J REINE ANG IN PRESS
[4]  
Berezin F. A., 1972, Mat. Sbornik (NS), V88, P268
[5]  
Blumenthal RM., 1959, Pac. J. Math, V9, P399
[6]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[7]  
Frank RL, 2011, MATHEMATICAL RESULTS IN QUANTUM PHYSICS, P138
[8]  
Frank RL, 2008, CONTEMP MATH, V500, P63
[9]   Geometrical versions of improved Berezin-Li-Yau inequalities [J].
Geisinger, Leander ;
Laptev, Ari ;
Weidl, Timo .
JOURNAL OF SPECTRAL THEORY, 2011, 1 (01) :87-109
[10]   Spectral properties of the Dirichlet operator Σi=1d(-partial derivativei2)s on domains in d-dimensional Euclidean space [J].
Hatzinikitas, Agapitos N. .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (10)