Uniform strong consistency of kernel density estimators under dependence

被引:9
作者
Kim, TY
Cox, DD
机构
[1] KEIMYUNG UNIV, DEPT STAT, TAEGU 704701, SOUTH KOREA
[2] RICE UNIV, DEPT STAT, HOUSTON, TX 77251 USA
关键词
uniform consistency; kernel density estimation; convergence rates;
D O I
10.1016/0167-7152(95)00008-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this note it is shown that the kernel density estimators converge a.s. uniformly on compact subsets of the variable under alpha-mixing. In particular, the rates of convergence for the estimators will be investigated to analyze dependency effects.
引用
收藏
页码:179 / 185
页数:7
相关论文
共 50 条
[31]   Kernel density estimator for strong mixing processes [J].
Kim, TY ;
Lee, S .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 133 (02) :273-284
[32]   Strong consistency of multivariate spectral variance estimators in Markov chain Monte Carlo [J].
Vats, Dootika ;
Flegal, James M. ;
Jones, Galin L. .
BERNOULLI, 2018, 24 (03) :1860-1909
[33]   Bandwidth selection for kernel density estimators of multivariate level sets and highest density regions [J].
Doss, Charles R. ;
Weng, Guangwei .
ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (02) :4313-4376
[34]   Data-driven choice of the smoothing parametrization for kernel density estimators [J].
Chacon, Jose E. .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2009, 37 (02) :249-265
[35]   On the asymptotic normality of kernel density estimators for causal linear random fields [J].
Wang, Yizao ;
Woodroofe, Michael .
JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 123 :201-213
[36]   Bandwidth Selection in Kernel Density Estimators for Multiple-Resolution Classification [J].
Kobos, Mateusz ;
Mandziuk, Jacek .
ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT I, 2012, 7267 :378-386
[37]   Algorithms for maximum-likelihood bandwidth selection in kernel density estimators [J].
Leiva-Murillo, Jose M. ;
Artes-Rodriguez, Antonio .
PATTERN RECOGNITION LETTERS, 2012, 33 (13) :1717-1724
[38]   Online Anomaly Detection With Bandwidth Optimized Hierarchical Kernel Density Estimators [J].
Kerpicci, Mine ;
Ozkan, Huseyin ;
Kozat, Suleyman Serdar .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (09) :4253-4266
[39]   Adaptive variable location kernel density estimators with good performance at boundaries [J].
Park, BU ;
Jeong, SO ;
Jones, MC ;
Kang, KH .
JOURNAL OF NONPARAMETRIC STATISTICS, 2003, 15 (01) :61-75
[40]   Large Deviations and Moderate Deviations for Kernel Density Estimators of Directional Data [J].
Gao, Fu Qing ;
Li, Li Na .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (05) :937-950