Uniform strong consistency of kernel density estimators under dependence

被引:9
作者
Kim, TY
Cox, DD
机构
[1] KEIMYUNG UNIV, DEPT STAT, TAEGU 704701, SOUTH KOREA
[2] RICE UNIV, DEPT STAT, HOUSTON, TX 77251 USA
关键词
uniform consistency; kernel density estimation; convergence rates;
D O I
10.1016/0167-7152(95)00008-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this note it is shown that the kernel density estimators converge a.s. uniformly on compact subsets of the variable under alpha-mixing. In particular, the rates of convergence for the estimators will be investigated to analyze dependency effects.
引用
收藏
页码:179 / 185
页数:7
相关论文
共 50 条
[21]   Classification Based on Combination of Kernel Density Estimators [J].
Kobos, Mateusz ;
Mandziuk, Jacek .
ARTIFICIAL NEURAL NETWORKS - ICANN 2009, PT II, 2009, 5769 :125-134
[22]   UNIFORM CONSISTENCY FOR NONPARAMETRIC ESTIMATORS IN NULL RECURRENT TIME SERIES [J].
Gao, Jiti ;
Kanaya, Shin ;
Li, Degui ;
Tjostheim, Dag .
ECONOMETRIC THEORY, 2015, 31 (05) :911-952
[23]   On the uniform consistency of the Bernstein density estimator [J].
Lu, Lu .
STATISTICS & PROBABILITY LETTERS, 2015, 107 :52-61
[24]   KERNEL DENSITY-ESTIMATION AND MARGINALIZATION CONSISTENCY [J].
WEST, M .
BIOMETRIKA, 1991, 78 (02) :421-425
[25]   Exploring the use of variable bandwidth kernel density estimators [J].
Salgado-Ugarte, Isaias H. ;
Perez-Hernandez, Marco A. .
STATA JOURNAL, 2003, 3 (02) :133-147
[26]   Parallel computation of kernel density estimators classifiers and their ensembles [J].
Lozano, E ;
Acuña, E .
CCCT 2003, VOL 1, PROCEEDINGS: COMPUTING/INFORMATION SYSTEMS AND TECHNOLOGIES, 2003, :479-484
[27]   An Analysis of the Operation of Distribution Networks Using Kernel Density Estimators [J].
Kornatka, Miroslaw ;
Gawlak, Anna .
ENERGIES, 2021, 14 (21)
[28]   Tuning selection for two-scale kernel density estimators [J].
Xinyang Yu ;
Cheng Wang ;
Zhongqing Yang ;
Binyan Jiang .
Computational Statistics, 2022, 37 :2231-2247
[29]   Tuning selection for two-scale kernel density estimators [J].
Yu, Xinyang ;
Wang, Cheng ;
Yang, Zhongqing ;
Jiang, Binyan .
COMPUTATIONAL STATISTICS, 2022, 37 (05) :2231-2247
[30]   An evaluation of the accuracy of kernel density estimators for home range analysis [J].
Seaman, DE ;
Powell, RA .
ECOLOGY, 1996, 77 (07) :2075-2085